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Abstract This paper describes the distributed information filtering where a
set of sensor networks are required to simultaneously estimate input and state
of a linear discrete-time system from collaborative manner. Our research pur-
pose is to develop a consensus strategy in which sensor nodes communicate
within the network through a sequence of Kalman iterations and data diffu-
sion. A novel recursive information filtering is proposed by integrating input
estimation error into measurement data and weighted information matrices.
On the fusing process, local system state filtering transmits estimation infor-
mation using the consensus averaging algorithm, which penalizes the disagree-
ment in a dynamic manner. A simulation example is provided to compare the
performance of the distributed information filtering with optimal Gillijins-De
Moor’s algorithm.
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1 Introduction

Simultaneous input and state estimation for dynamic systems has a wide range
of applications, ranging from fault detection and isolation [13], geophysical and
environment surveillance [22], maneuvering target tracking [11], to video wa-
termarking protection [15-18], etc. In these applications, input variables are
often unmeasurable and inaccessible and treated as a stochastic process with
unknown statistics. This problem can also find applications in estimation of
the large-scale distributed parameter systems with a more general considera-
tion that no prior information about boundary conditions are available [28].
Because of its practical significance, simultaneous input and state estimation
has received considerable attention during the past several decades.

We consider the distributed filtering for simultaneous input and state esti-
mation over a sensor network, in which each sensor node might access to the
different local measurement depending on the available resources. Basic princi-
ples and structures for distributed estimation have been discussed in [25], [26].
One of the general design methodologies have been derived from the consen-
sus protocols [4], [9], [27]. The considered consensus filtering involves design
of information processing algorithm with a two-fold objective. One is every
node jointly estimate the input and the state variables of systems based on
local observations, the other is update the local filtering information to reach
a consensus by including the estimation received from its neighboring sensor
nodes. The research of consensus protocols for spatially fixed or mobile sensor
networks has been considered extensively in the context of distributed state
estimation, coverage control and target tracking [19-21], etc.

On the other hand, optimal filtering for joint input and state estimation
is a challenging task since they are inherently interconnected and coupled. An
optimal recursive state filter is developed in [20] without direct feedthrough of
the unknown input to the measurement. In [8], a two-stage Kalman filter and
an optimal input filtering technique are combined to achieve joint input and
state estimation. Most recently, in [6], [7], a set of muliti-step recursive filters
are proposed by minimizing the error variance in the absence and presence
the direct feedthrough, respectively. In addition minimum variance estima-
tion, some matrix manipulation methods are useful for state estimation with
unknown inputs, for instance, in [5], [23] and reference therein. In spite of
many optimal filtering algorithms have been extended, to the best of the au-
thors knowledge, information filtering approach has not been developed for
simultaneous input and state estimation.

In this paper, a novel distributed information consensus filtering for for
simultaneous input and state estimation of linear discrete-time systems is pro-
posed based on:

(1) to develop a recursive information filtering for simultaneous input and
state estimation by combining the input estimation error into the weighted
measurement data and the weighted information matrix. This kind of filter is
characterized by computation of the inverse of the covariance matrix and the
state information estimate.
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(2) to design a consensus protocol in which the local partially state es-
timates transmit their information using consensus averaging algorithm and
penalize the disagreement among themselves in a dynamic manner. The pro-
posed algorithm presents an extension of the distributed Kalman consensus
filter proposed in [21] by joint input and state estimation.

The subsequent sections are organized as follows. Some background on sen-
sor networks and simultaneous input and state estimation method are provided
in Section 2. Section 3 studies the extended information filtering algorithm
with unknown input. Distributed information consensus filtering over sensor
networks is introduced in Section 4, and a numerical example for performance
comparison is presented in Section 5.

2 Problem formulation

Consider the following linear discrete-time stochastic time-varying model with
unknown inputs:

xk+1 = Akxk + Bkdk + wk (1)

where, xk ∈ Rn, dk ∈ Rm, and wk ∈ Rn are the state vector, unknown input,
and process noise at time k ∈ {0, 1, 2, · · ·}, respectively. Ak, Bk are determin-
istic known matrices with appropriate dimensions. wk are uncorrelated white
noise with covariance matrices Qk = E[wkwT

k ] > 0.
In the distributed approach, we are interested in tracking the input and

state of this process using a network of N sensors. Each sensor i measures the
partial observations as

z
(i)
k = H

(i)
k xk + v

(i)
k (2)

where z
(i)
k ∈ Rpi , with

∑N
i=1 pi = p, and v

(i)
k is measurement noise assumed to

be white noise with known covariance matrices R
(i)
k = E[v(i)

k v
(i)T
k ] > 0.

We collect overall observations in the sensor network to get a centralized
observation model. Let observation vector zk ∈ Rp, observation matrix Hk ∈
Rp×n, and observation noise vector vk ∈ Rp be

zk = [z(1)
k , · · · , z

(N)
k ]T ,

Hk = [H(1)
k , · · · , H

(N)
k ]T , (3)

vk = [v(1)
k , · · · , v

(N)
k ]T .

Then the centralized observation model is given by

zk = Hkxk + vk. (4)

Since observation noises of different sensors are mutually independent, we can
combine R

(i)
k into one global covariance matrix Rk, as

Rk = blockdiag[R(1)
k , · · · , R

(N)
k ]. (5)
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Satisfied the assumption [6] that rankHkBk−1 = rankBk−1 = m, for all
k, the recursive joint input and state filters for system (1), (4) are as follows:

x̂k|k = x̄k|k + Kk(zk −Hkx̄k|k), (6)

x̄k|k = x̂k|k−1 + Bk−1d̂k−1, (7)
x̂k|k−1 = Ak−1x̂k−1|k−1, (8)

d̂k−1 = Mk(zk −Hkx̂k|k−1), (9)

where x̂k|k and d̂k−1 represent the state and input estimate, x̄k|k and x̂k|k−1

represent the state prediction with or without the input information. Kk ∈
Rn×p, Mk ∈ Rp×m are the gain matrices to be determined.

The error covariance matrices of system (1) are defined as

P+
k|k = E[ηkηT

k ],

P−k|k = E[η̄kη̄T
k ],

where ηk = xk− x̂k|k, η̄k = xk− x̄k|k. It is straightforward to see that matrices
P+

k|k, P−k|k are symmetric positive definite.
By minimizing the error variance, the optimal gain matrices are obtained

as

Mk = (DT
k R̃−1

k Dk)−1DT
k R̃−1

k , (10)

Kk = (P−k|kHT
k + Sk)R̆−1

k , (11)

where Dk = HkBk−1, Sk = −Bk−1MkRk,

R̃k = Hk(Ak−1P
+
k−1|k−1A

T
k−1 + Qk)HT

k + Rk,

and
R̆k = HkP−k|kHT

k + Rk + HkSk + ST
k HT

k .

The error covariance matrices update according to

P+
k|k = P−k|k −Kk(P−k|kHT

k + Sk)T , (12)

P−k|k = Ãk−1P
+
k−1|k−1Ã

T
k−1 + Q̃k−1, (13)

where,

Ãk−1 = (In −Bk−1MkHk)Ak−1, (14)
Q̃k−1 = Bk−1MkRkMT

k BT
k−1. (15)

Remark 1: For any k, R̆k is singular in Gillijins-De Moor’s algorithm which
means that the optimal gain Kk is not unique. However, here it could be
assumed nonsingular only by choosing its full rank submatrix and maintains
the above equations.
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3 Information filters for simultaneous input and state estimation

In this section, we extend Kalman filtering (6)-(9) to information filtering by
propagating the inverse of the estimation error covariance matrix rather than
the error covariance itself.

Recall from equation (11) that the Kalman gain Kk could be written as

Kk = (P−k|kHT
k + Sk)R̆−1

k

= P−k|k[Hk + ST
k (P−k|k)−1]T R̆−1

k

= P−k|k[Hk + ST
k (P−k|k)−1]T [HkP−k|kHT

k + Rk + HkSk + ST
k HT

k ]−1

= P−k|k[Hk + ST
k (P−k|k)−1]T [(Hk + ST

k (P−k|k)−1)P−k|k
(Hk + ST

k (P−k|k)−1)T + Rk − ST
k (P−k|k)−1Sk]−1.

Defining

H̄k = Hk + ST
k (P−k|k)−1, (16)

R̄k = Rk − ST
k (P−k|k)−1Sk, (17)

then the Kalman gain matrix can be equivalently expressed as

Kk = P−k|kH̄T
k (H̄kP−k|kH̄T

k + R̄k)−1, (18)

and the error covariance matrix P+
k|k can be expressed as

P+
k|k = P−k|k −Kk(P−k|kHT

k + Sk)T

= P−k|k −Kk[Hk + ST
k (P−k|k)−1]P−k|k

= P−k|k −KkH̄kP−k|k
= P−k|k − P−k|kH̄T

k (H̄kP−k|kH̄T
k + R̄k)−1H̄kP−k|k.

Taking the inverse of both sides of above equation gives

(P+
k|k)−1 = [P−k|k − P−k|kH̄T

k (H̄kP−k|kH̄T
k + R̄k)−1H̄kP−k|k]−1. (19)

Applying the matrix inversion lemma,

(A + BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1,

equation (19) can be written as

P+
k|k = [(P−k|k)−1 + H̄T

k R̄−1
k H̄k]−1. (20)
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Substituting (P+
k|k)−1 into equation (18), we have

Kk = P+
k|k[(P−k|k)−1 + H̄T

k R̄−1
k H̄k]P−k|kH̄T

k (H̄kP−k|kH̄T
k + R̄k)−1

= P+
k|k(H̄T

k + H̄T
k R̄−1

k H̄kP−k|kH̄T
k )(H̄kP−k|kH̄T

k + R̄k)−1

= P+
k|kH̄T

k (I + R̄−1
k H̄kP−k|kH̄T

k )(H̄kP−k|kH̄T
k + R̄k)−1

= P+
k|kH̄T

k R̄−1
k (R̄k + H̄kP−k|kH̄T

k )(H̄kP−k|kH̄T
k + R̄k)−1

= P+
k|kH̄T

k R̄−1
k , (21)

which gives the Kalman gain for joint input and state estimation with corre-
lated error covariance.

Similar to the derivation of formula (21), we further have

P+
k|k = (I −KkH̄k)P−k|k(I −KkH̄T

k ) + KkR̄kKT
k , (22)

which gives measurement update equation for estimation error covariance with
correlated process and measurement noise.

Substituting H̄k into equation (6) gives

x̂k|k = x̄k|k + Kk(zk −Hkx̄k|k)

= x̄k|k + Kk[zk + ST
k (P−k|k)−1x̄k|k − H̄kx̄k|k].

Define the weighted sensor measurement yk and the information matrix Uk

as

yk = H̄T
k R̄−1

k [zk + ST
k (P−k|k)−1x̄k|k], (23)

Uk = H̄T
k R̄−1

k H̄k, (24)

then, the state estimation equation and error covariance matrix can be restated
as

x̂k|k = x̄k|k + P+
k|k(yk − Ukx̄k|k), (25)

P+
k|k = [(P−k|k)−1 + Uk]−1. (26)

Information filtering for simultaneous input and state estimation can be
summarized as follows :

x̂k|k = x̄k|k + P+
k|k(yk − Ukx̄k|k), (27)

Uk = H̄T
k R̄−1

k H̄k, (28)
P+

k|k = [(P−k|k)−1 + Uk]−1, (29)

P−k|k = Ãk−1P
+
k−1|k−1Ã

T
k−1 + Q̃k−1, (30)

x̄k|k = x̂k|k−1 + Bk−1d̂k−1, (31)
x̂k|k−1 = Ak−1x̂k−1|k−1, (32)

d̂k−1 = Mk(zk −Hkx̂k|k−1), (33)



Title Suppressed Due to Excessive Length 7

Algorithm 1: Distributed consensus information filter for

simultaneous input and state estimation

Given P
+(i)

0|0 , x̄
(i)

0|0 at time k = 0, and messages mj = {λ(j)
0 , Λ

(j)
0 , x̄

(j)

0|0},
j ∈ Ji = Ni

⋃
{i},

1: Obtain weighted measurement y
(i)
k

with covariance R̄
(i)
k

.

2: Computer information vector and matrix of node i

λ
(i)
k

= H̄
(i)T
k

R̄
(i)−1
k

[z
(i)
k

+ S
(i)T
k

(P
−(i)

k|k )−1x̄
(i)

k|k]

Λ
(i)
k

= H̄
(i)T
k

R̄
(i)−1
k

H̄
(i)
k

3: Broadcast massage mi = {λ(i), Λ(i), x̄
(i)
k
} to neighbors.

4: Receive messages from all neighbors.

5: Fuse information matrices and vectors

y
(i)
k

=
∑

j∈Ji
λ
(j)
k

, U
(i)
k

=
∑

j∈Ji
Λ

(j)
k

.

6: Computer the consensus state estimate

x̂
(i)

k|k = x̄
(i)

k|k + P
+(i)

k|k (y
(i)
k
− U

(i)
k

x̄
(i)

k|k) + γP
−(i)

k|k
·
∑

j∈Ni
(x̄

(j)

k|k − x̄
(i)

k|k)

P
+(i)

k|k = [(P
−(i)

k|k )−1 + U
(i)
k

]−1,

γ = ε/(1 + ‖P−(i)

k|k ‖).
7: Update the state of the local information filter

P
−(i)

k|k ←− Ã
(i)
k−1

P
+(i)

k−1|k−1
Ã

(i)T
k−1

+ Q̃
(i)
k−1

,

x̄
(i)

k|k ←− Ak−1x̂
(i)

k−1|k−1
+ B

(i)
k−1

d̂
(i)
k−1

,

8: Update the input of the local estimators

d̂
(i)
k−1

= M
(i)
k

(z
(i)
k
−H

(i)
k

Ak−1x̂
(i)

k−1|k−1
).

with weighted sensor measurement data yk.
Remark 2: For the simultaneous state and input estimation problem [6],

if the prior input estimate is unbiased, then in the state estimation step, the
Kalman state gain matrix Kk and the error covariance matrix P+

k|k have the
familiar updating forms of the standard Kalman information filter.

Remark 3: When Bk = 0, the classic information filter without unknown
input in the system model is obtained.

4 Distributed information consensus filter

We propose a distributed Kalman consensus filtering consisting of local filters
with a disagreement term

x̂
(i)
k|k = x̄

(i)
k|k + K

(i)
k (z(i)

k −H
(i)
k x̄

(i)
k|k) + C

(i)
k

∑

j∈Ni

(x̄(j)
k|k − x̄

(i)
k|k) (34)

where K
(i)
k , C

(i)
k are Kalman and consensus gains of node i, Ni denote the

neighbors of sensor node i.
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We can choose

K
(i)
k = P

−(i)
k|k H̄

(i)T
k (H̄(i)

k P
−(i)
k|k H̄

(i)T
k + R̄

(i)
k )−1, (35)

C
(i)
k = γP

−(i)
k|k = ε

P
−(i)
k|k

1 + ‖P−(i)
k|k ‖

, (36)

where ‖ · ‖ is the frobenius norm of a matrix and ε > 0 is a relatively small
constant. H̄

(i)
k , P

−(i)
k|k , and R̄

(i)
k for the sensor i can be calculated from the

equations (16), (13), and (17) with local observation matrix H
(i)
k .

Similar to averaging consensus algorithm, adding consensus term in equa-
tion (34) will force local state estimators to reach a consensus. Subsequently,
input estimator could be obtained from the innovation with the least squares
estimation, which is unbiased for local sensor node i .

Algorithm 1 shows a message passing version of the distributed informa-
tion consensus filter for simultaneous input and state estimation during one
time step for the node i. The inverse of the covariance matrices and the state
information estimates instead of measurements are transmitted for consensus
fusion.

Remark 4: In consensus filter for simultaneous input and state estimation,
we choose K

(i)
k as the standard Kalman filter, while the proposed algorithm is

obviously not the optimal filter for distributed estimation. In fact, the coupled
estimates among the sensors makes it difficult to find an optimal solution min-
imizing the estimation error. The performance of this suboptimal distributed
algorithm, which approximating the centralized optimal Gillijins-De Moor’s
algorithm will be illustrated by a example in the next section.

Remark 5: The choose of consensus gain C
(i)
k is free, while a poor choice

leads to either lack of consensus on estimation, or lack of stability of the error
dynamics of the filter.

5 Example

Let the linear system under consideration be represented by a fourth-order
model with order n = 4, m = 1, and matrices

A =




−0.1 0.13 0.34 0
−0.1 − 0.3 − 0.1 0.1
−0.1 0 0 0.2
0.21 − 0.1 − 0.3 − 0.5


 , (37)

B =
[
1 0 0 0

]T
. (38)

where input dk and process noise wk are taken as the Gaussian white noises
with zero mean and unit variance, respectively. We assume no information
about dk is available for use.
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Fig. 1 Actual state values (red solid line), centralized state estimation (black dashed line),
and distributed state estimation (blue dot-solid line). From top to bottom: the components
of the state variable
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Fig. 2 Actual input values (red solid line), centralized input estimation (black dashed line),
and distributed input estimation (blue dot-solid line)
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Table 1 Comparison between the 2-norm of input and state estimation errors by Algorithm
1 and Gillijns-De Moor algorithm

Algorithm 1 Gillijns-De Moor algorithm

Input estimation

‖d̃‖2 4.3427 4.0323

State estimation

‖η(1)‖2 0.9184 0.8932

‖η(2)‖2 3.1212 3.0452

‖η(3)‖2 1.0000 0.8550

‖η(4)‖2 5.1687 5.0015

Two sensor nodes are located separately with the following partial obser-
vation matrices:

H(1) =
[

1 1 0 0
0 1 0 1

]
, (39)

H(2) =
[

1 0 1 0
0 0 1 1

]
, (40)

with the measurement noise v
(i)
k = 0.02I2, i = 1, 2.

In this sensor networks, the first sensor accesses to local measurement z
(1)
k

with noisy state components x(1), x(2), and x(4), while the second sensor
accesses to local measurement z

(2)
k with noisy state components x(1), x(3),

and x(4). Clearly the system states are not fully observable with each single
sensor nodes separately, but are fully observable by the centralized observation
matrix H = [H(1) H(2)]T .

In this experiment, we assume that two sensor nodes are interactive con-
nected. The consensus gains are C(i) = 0.5, i = 1, 2, and the initial values for
each sensor group are

P
+(i)
0|0 = 106I4, x̄

(i)
0|0 = [2 2 2 2]T . (41)

We compare the input estimation errors d̃k = dk− d̂k and the state estima-
tion errors ηk between the distributed information filtering and the centralized
optimal Gillijins-De Moor’s algorithm. The corresponding 2-norm values of the
estimation errors in one implementation are shown in Table 1. From Figure
1, Figure 2 and Table 1, we conclude that the performance of the proposed
distributed consensus estimator is close to the optimal one.

The evolution of the disagreement term defined as

‖δk‖2 =
N∑

i=1

(δ(i)
k )2, (42)
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where δ
(i)
k = x̂

(i)
k − 1

N

∑
j x̂

(j)
k , is depicted in Figure 3 which shows a relatively

high disagreement at the beginning is bounded asymptotically.

6 Conclusion

In this paper, distributed filtering for simultaneous input and state estimation
is presented with a consensus protocol. The local filtering algorithm is devel-
oped by integrating input estimation error into weighted local measurement
and local information matrix. A consensus algorithm is developed using the
averaging protocol which penalizes the disagreement in a dynamic manner.
Simulation example is shown that the proposed distributed consensus filter-
ing algorithm performs closely to the optimal centralized Gillijins-De Moor’s
algorithm.

Future work will consider applications of the distributed consensus filtering
estimation to some autural systems, such as the networks of traffic flows with
changing traffic demands, and hydrological and atmospheric transport models
with unknown boundary conditions.
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