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Abstract Circuits with delay elements are very popular and important in the simula-
tion of very-large-scale integration (VLSI) systems. Neutral systems (NSs) with mul-
tiple constant delays (MCDs), for example, can be used to model the partial element
equivalent circuits (PEECs), which are widely used in high-frequency electromag-
netic (EM) analysis. In this paper, the model order reduction (MOR) problem for the
NS with MCDs is addressed by moment matching method. The nonlinear exponential
terms coming from the delayed states and the derivative of the delayed states in the
transfer function of the original NS are first approximated by a Padé approximation
or a Taylor series expansion. This has the consequence that the transfer function of
the original NS is exponential-free and the standard moment matching method for
reduction is readily applied. The Padé approximation of exponential terms gives an
expanded delay-free system, which is further reduced to a delay-free reduced-order
model (ROM). A Taylor series expansion of exponential terms lets the inverse in the
original transfer function have only powers-of-s terms, whose coefficient matrices are
of the same size as the original NS, which results in a ROM modeled by a lower-order
NS. Numerical examples are included to show the effectiveness of the proposed al-
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gorithms and the comparison with existing MOR methods, such as the linear matrix
inequality (LMI)-based method.

Keywords Reduction · Moment · Time delay · Neutral system · Descriptor system

1 Introduction

To describe the behavior of complex physical systems accurately, high or even infi-
nite order mathematical models are often required. However, direct simulation of the
original high or even infinite order models is very difficult and sometimes prohibitive
due to unmanageable levels of storage, high computational cost and long computation
time. Therefore, model order reduction (MOR) , which replaces the original complex
and high-order system by a reduced-order model (ROM), plays an important role in
many areas of engineering, e.g., transmission lines in circuit packaging [31, 38], PCB
(printed circuit board) design [11, 48, 58] and networked control systems [18, 28].
The obvious advantages of MOR include that the use of ROMs results in not only
considerable savings in storage and computational time, but also fast simulation and
verification leading to shortened design cycle [2, 3, 5, 12, 15, 26, 33, 34, 36, 52, 59].

A lot of MOR methods have been presented in the past few decades [4, 14, 16,
17, 20–22, 25, 30, 35, 40, 44, 49, 51]. Most of them fall into two categories. The
first one are singular value decomposition (SVD)-based methods via constructing or
optimizing the ROM according to a suitably chosen criterion, such as the H∞ norm,
energy-to-peak gain and Hankel norm [40, 44, 49, 51]. The second category are the
moment matching-based methods. For linear time invariant (LTI) systems, the mo-
ment matching method [4, 5, 16, 20, 35] is to expand the transfer function by Taylor
series, and then create a ROM for which the first few terms (also called moments) of
its Taylor series expansion match those of the original model. The projection matrix
to derive the ROM is usually obtained from Krylov subspace iterative schemes. Over
the past years, moment matching methods are widely used due to the availability of
efficient iterative schemes for constructing the projection matrix, in contrast to the
SVD approach which usually involves solving expensive matrix equations or convex
optimization problems.

In many physical, industrial and circuit systems, time delays occur due to the
finite capability of information processing, data transmission among various parts
of the systems and some essential simplification of the corresponding process mod-
els [9, 27, 29, 37, 39, 49, 55–57]. The delaying effect is often detrimental to the
performance, and even renders instability. So, the presence of time delays substan-
tially complicates analytical and theoretical aspects of system design. In the past few
decades, researchers have paid great attention to the analysis and synthesis of time
delay systems (TDSs). Most studies are involved with systems having delays in the
system states only, which are often called retarded systems (RSs) [42, 46]. Another
important and more general TDSs, called neutral systems (NSs), have dynamics gov-
erned by delays not only in the system states, but also in the derivative of system
states. For example, in the context of circuit modeling and simulation, NSs can be
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formulated for the partial element equivalent circuits (PEECs) widely used in elec-
tromagnetic (EM) simulation [24]. The NS has attracted a lot of research effort in
recent years [23, 32, 39, 41, 45, 47, 53].

The MOR of TDSs is mainly based on the SVD-based method, which constructs
the ROM such that the error norm between the original system and the ROM is less
than some given tolerance. The H∞ MOR problem for RSs is studied in [54] by solv-
ing linear matrix inequalities (LMIs) with a rank constraint. The problem in [54] for
linear parameter-varying systems with both discrete and distributed delays is consid-
ered in [50] by solving parameterized LMIs. The MOR of a NS with multiple constant
delays (MCDs), however, has received little attention despite its importance in theory
and practice [43, 45]. The energy-to-peak MOR and H∞ MOR for a NS are studied
in [43] and [45], respectively, in terms of LMIs with inverse constraints. LMIs can
be solved by interior-point method (IPM) together with Newton’s method via mini-
mizing a strictly convex function whereby all matrix variables are transformed into a
high-order vector variable in [8]. In practice, the IPM fails to solve large scale LMIs
as the storage of the Hessian matrix of the objective convex function used in New-
ton’s method is memory-demanding and the computational cost for the Hessian ma-
trix is also very high. Although cone complementarity linearization (CCL) algorithm
[13] provides a way to transform the LMIs with inverse constraints to a minimiza-
tion problem subject to original LMIs and additional LMIs coming from the inverse
constraints, much higher computational cost is needed for expanded LMIs. Hence,
though the methods in [43, 45] are theoretically correct, they are of little practical use
in reducing high-order NSs due to the prohibitive computational cost.

As the SVD-based methods [43, 45] suffer from high computational cost, it is
desirable to use moment matching method to approximate the NSs owing to its
much faster computation. However, the major difficulty of applying moment match-
ing method on a NS is the generation of moments from the NS transfer function,
which are also the coefficient matrices of its Taylor series expansion. The reason is
the appearance of nonlinear exponential terms in the transfer function from the de-
layed state and the derivative of the delayed state, making direct Taylor series expan-
sion infeasible. In this paper, we propose two methods to approximate the nonlinear
exponential terms and to generate their moments.

The major contribution of this paper is the reduction of the NS with MCDs by
first approximating the nonlinear exponential terms via Padé approximation or Taylor
series expansion of the exponential terms. The former results in an expanded-size,
but exponential-free, state space which can then be reduced by standard moment
matching method. Whereas the latter effectively replaces the exponential terms by
truncated Taylor series, this allows the inverse in the transfer function computation
to be again exponential-free, but contains only powers-of-s terms whose coefficient
matrices are of the same size as those of the original NS. Subsequently, standard
moment matching techniques for reduced-order modeling can be readily used. The
proposed two methods with low computation cost make it applicable to the reduction
of high-order NS.

The outline of this paper is as follows. In Sect. 1, the MOR problem for descrip-
tor system (DS) by moment matching method is reviewed and the challenge of the
MOR problem for the NS with MCDs is given. In Sect. 2, Padé approximation of
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exponential terms results in a delay-free ROM modeled by DS. In Sect. 3, the ROM
with the same structure of original NS is given by replacing exponential terms via
their Taylor series expansions. Numerical examples to demonstrate the effectiveness
of the proposed MOR results and the comparison with other methods are given in
Sect. 4. Finally, Sect. 5 draws the conclusion.

1.1 Neutral Systems

Consider a NS with MCDs, denoted by Σ ,

Σ : Eẋ(t) = Ax(t) +
p∑

i=1

Ahi
x(t − hi) +

q∑

j=1

Adj
ẋ(t − dj ) + Bu(t), (1)

y(t) = Cx(t), (2)

x(t) = φ(t), t ∈ [−α,0), (3)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input and y(t) ∈ R
l is the output.

E, A, Ahi
, Adj

, B and C, i = 1, . . . , p, j = 1, . . . , q , are properly dimensioned real
constant matrices. Here hi and dj , i = 1, . . . , p, j = 1, . . . , q , are the constant delays
and α = max{hi, dj , i = 1, . . . , p, j = 1, . . . , q}. All derivations in this paper can
straightforwardly be extended to time varying delays case by assuming hi and dj as
the upper bounds of the time varying delays. The order of the NS Σ is defined as the
number of states, i.e., n. Under the assumption x(0) = φ(0) = 0, the transfer function
from input u(t) to state x(t) is given by

GX(s) =
(

sE − A −
p∑

i=1

Ahi
e−shi −

q∑

j=1

Adj
se−sdj

)−1

B, (4)

by taking Laplace transform on the left and right sides of (1). The NS Σ is also
characterized by its transfer function from input u(t) to output y(t)

G(s) = C

(
sE − A −

p∑

i=1

Ahi
e−shi −

q∑

j=1

Adj
se−sdj

)−1

B. (5)

1.2 MOR of Systems Without Delay

When the NS Σ does not have time delays hi and dj , i.e., Ahi
= 0 and Adj

= 0, i =
1, . . . , p, j = 1, . . . , q , it reduces to a DS Σds,

Σds : Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(6)

with transfer function

Gds(s) = C(sE − A)−1B.
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The above DS becomes to an LTI system when E = I . The Taylor series expansion
of Gds(s) around s = 0 is

Gds(s) = −CB − C
(
A−1E

)
A−1Bs − C

(
A−1E

)2
A−1Bs2 − · · · , (7)

by assuming that A is invertible. Coefficient matrices of its Taylor series expansion
in (7) are called block moments or moments [35] of the DS Σds.

The MOR by moment matching method for DS Σds is to create a ROM for which
the first few moments match those from the original model [4, 14, 16, 17, 20, 21, 35,
44, 49, 52]. The projection matrix V ∈ R

n×n̂ to generate the ROM is from

colspan(V ) ⊇ K(0,Σds, n̂), V T V = I,

where K(0,Σds, n̂) is defined as the n̂th Krylov subspace

K(0,Σds, n̂)

= colspan
(
A−1B,

(
A−1E

)
A−1B,

(
A−1E

)2
A−1B, . . . ,

(
A−1E

)n̂−1
A−1B

)
(8)

and the system matrices of the resulting ROM are

Ê = V T EV, Â = V T AV, B̂ = V T B, Ĉ = CV (9)

[7, 35]. Therefore, the key point in MOR by moment matching method is the genera-
tion of moments or coefficient matrices of the Taylor series expansion of the transfer
function Gds(s).

1.3 MOR of NSs

For the MOR problem of the NS Σ , we also want to find a projection matrix V

for constructing the ROM to match the first few moments of transfer function G(s)

in (5). However, when time delays are taken into account, G(s) becomes much more
complicated than Gds(s) due to exponential terms e−shi and e−sdj , i = 1, . . . , p, j =
1, . . . , q , from the delayed states and the derivative of delayed states, respectively.
As direct Taylor series expansion of G(s) is impossible due to the appearance of
nonlinear terms e−shi and e−sdj , approximation of these e−shi and e−sdj gives an
exponential-free approximation of the Taylor series expansion of G(s)

G(s) ≈ G0 + G1s + G2s
2 + · · · + Gns

n + · · · , (10)

where Gi , i = 0,1, . . ., are constant matrices and called approximated moments of
the NS Σ . Two kinds of approximation of exponential terms are used in this paper.
One is the Padé approximation, which is the most frequently used method to approx-
imate them by finite rational functions. The other is to expand exponential terms by
their Taylor series expansions. The former gives rise to a ROM modeled by a DS in
Sect. 2 and the latter results in a ROM modeled by a NS in Sect. 3.
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2 ROM by Padé Approximation

The following lemma shows that the exponential term e−shi is approximated by a
transfer function of an LTI system in terms of Padé approximation. The most impor-
tant advantage is that Gi in (10) are expressed by moments of an expanded DS. Then
projection matrix proposed in [2, 7] is ready for the construction of the ROM.

Lemma 1 e−shi is approximated by the βhi
th order transfer function of LTI system

e−shi ≈ C̄hi
(sI − Āhi

)−1B̄hi
+ D̄hi

, (11)

where

C̄hi
=

⎧
⎪⎨

⎪⎩

[
b0/bβhi

− a0/aβhi
b1/bβhi

− a1/aβhi
· · · bβhi

−1/bβhi
− ak/bβhi

]
,

αhi
= βhi

,
[
b0/aβhi

b1/aβhi
· · · bβhi

−1/bβhi

]
, αhi

≤ βhi
− 1,

(12)

B̄hi
= [

0 0 · · · 1
]T

, (13)

Āhi
=

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 0
...

. . .

0 0 0 · · · 1
−a0/aβhi

−a1/aβhi
−a2/aβhi

· · · −aβhi
−1/aβhi

⎤

⎥⎥⎥⎥⎥⎦
, (14)

D̄hi
=

⎧
⎨

⎩

bβhi

aβhi

, αhi
= βhi

,

0, αhi
< βhi

,

ak = (αhi
+ βhi

− k)!αhi
!

(αhi
+ βhi

)!k!(αhi
− k)!h

k
i , (15)

bk = (αhi
+ βhi

− k)!αhi
!

(αhi
+ βhi

)!k!(αhi
− k)! (−hi)

k, (16)

and αhi
and βhi

with αhi
≤ βhi

are positive integers.

Proof From [19, p. 557], e−shi can be approximated by βhi
th order Padé approxima-

tion,

e−shi ≈
∑αhi

k=0 bks
k

∑βhi

k=0 aksk
,

where ak and bk are defined in (15) and (16). Firstly, we assume that αhi
= βhi

. It is
easy to get

e−shi ≈
∑βhi

k=0 bks
k

∑βhi

k=0 aksk
= bβhi

aβhi

∑βhi

k=0(bk/bβhi
)sk

∑βhi

k=0(ak/aβhi
)sk
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= bβhi

aβhi

+
∑βhi

−1
k=0 (bk/bβhi

− ak/aβhi
)sk

∑βhi

k=0(ak/aβhi
)sk

. (17)

It follows by [1, Theorem 3.5.1] that the controllable canonical realization of the
second term in (17) is equivalent to

C̄hi
(sI − Āhi

)−1B̄hi
,

which gives (11), with C̄hi
, Āhi

and B̄hi
given in (12)–(14). In the case of αhi

=
βhi

− 1, i.e., bβhi
= 0, (17) becomes a βhi

th order transfer function

e−shi ≈
∑βhi

−1
k=0 bks

k

∑βhi

k=0 aksk
=

∑βhi
−1

k=0 (bk/aβhi
)sk

sβhi + ∑βhi
−1

k=0 (ak/aβhi
)sk

, (18)

which results in (11) for the case αhi
= βhi

− 1 by the controllable canonical realiza-
tion again. The case αhi

< βhi
− 1 can be obtained similar to the case αhi

= βhi
− 1

by assuming bαhi
+1 = · · · = bβhi

−1 = 0. The conclusion holds. �

A proposition is followed from Lemma 1 related to the approximation of G(s).

Proposition 1 G(s) is approximated by

G(s) ≈ C(sE − A)−1 B

= −C A−1 B − C
(

A−1 E
)(

A−1 B
)
s − C

(
A−1 E

)2(A−1 B
)
s2 − · · · , (19)

where

E = diag[E,I, . . . , I, I, . . . , I ] ∈ R
ñ×ñ, (20)

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A + ∑p
i=1 Ahi

D̃hi
+ ∑q

j=1 Adj
D̃dj

Ah1 C̃h1 · · · Ahp
C̃hp

Ad1 C̃d1 · · · Adq
C̃dq

B̃h1 Ãh1
...

. . .

B̃hp
Ãhp

B̃d1 Ãd1
...

. . .

B̃dq
Ãdq

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
ñ×ñ, (21)

B = [BT 0 · · · 0 0 · · · 0]T ∈ R
ñ×m, C = [C 0 · · · 0 0 · · · 0] ∈ R

p×ñ, (22)

C̃hi
= diag[C̄hi

, . . . , C̄hi
] ∈ R

n×nrhi , Ãhi
= diag[Āhi

, . . . , Āhi
] ∈ R

nrhi
×nrhi , (23)

B̃hi
= diag[B̄hi

, . . . , B̄hi
] ∈ R

nrhi
×n, D̃hi

= diag[D̄hi
, . . . , D̄hi

] ∈ R
n×n,

i = 1, . . . , p, (24)
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C̃dj
= diag[C̄dj

, . . . , C̄dj
] ∈ R

n×nrdj , Ãdj
= diag[Ādj

, . . . , Ādj
] ∈ R

nrdj
×nrdj , (25)

B̃dj
= diag[B̄dj

, . . . , B̄dj
] ∈ R

nrdj
×n

, D̃dj
= diag[D̄dj

, . . . , D̄dj
] ∈ R

n×n,

j = 1, . . . , q, (26)

ñ = n

(
1 +

p∑

i=1

βhi
+

q∑

j=1

βdj

)
, (27)

and C̄hi
, Āhi

, B̄hi
, D̄hi

, rhi
, i = 1, . . . , p, and C̄dj

, Ādj
, B̄dj

, D̄dj
and rdj

, j =
1, . . . , q , are obtained from Lemma 1.

Proof From Lemma 1, e−shi is approximated by the βhi
th order transfer function

C̃hi
(sI − Ãhi

)−1B̃hi
+ D̃hi

which follows that

L
(
x(t − hi)

) = e−shi X(s) ≈ (
C̃hi

(sI − Ãhi
)−1B̃hi

+ D̃hi

)
X(s),

where X(s) is the Laplace transform of x(t) and C̃hi
, Ãhi

, B̃hi
and D̃hi

, i = 1, . . . , p,
are defined in (23) and (24). So, x(t − hi), i = 1, . . . , p, can be treated as the output
of a βhi

th order LTI system Σhi
,

Σhi
: ẋhi

(t) = Ãhi
xhi

(t) + B̃hi
x(t),

x(t − hi) = whi
(t) = C̃hi

xhi
(t) + D̃hi

x(t).

Similarly, it is easy to get

L
(
ẋ(t − dj )

) = se−sdj X(s) ≈ (
C̃dj

(sI − Ãdj
)−1B̃dj

+ D̃dj

)
X(s),

which can be treated as the output of a βdj
th order LTI system Σdj

,

Σdj
: ẋdj

(t) = Ãdj
xdj

(t) + B̃dj
x(t),

ẋ(t − dj ) = rdj
(t) = C̃dj

xdj
(t) + D̃dj

x(t),

where C̃dj
, Ãdj

, B̃dj
and D̃dj

, j = 1, . . . , q , are given in (25) and (26). Together with
NS Σ , we have

Σ : Eẋ(t) = Ax(t) +
p∑

i=1

Ahi
whi

(t) +
q∑

j=1

Adj
rdj

(t) + Bu(t),

ẋhi
(t) = Ãhi

xhi
(t) + B̃hi

x(t),

ẋdj
(t) = Ãdj

xdj
(t) + B̃dj

x(t),

whi
(t) = C̃hi

xhi
(t) + D̃hi

x(t),

rdj
(t) = C̃dj

xdj
(t) + D̃dj

x(t), i = 1, . . . , p, j = 1, . . . , q,

y(t) = Cx(t).

(28)
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By defining xs(t) = [xT (t) xT
h1

(t) · · · xT
hp

(t) xT
d1

(t) · · · xT
dq

(t)]T , the system in (28)
can be rewritten as an expanded DS Σs ,

Σs : E ẋs(t) = Axs(t) + Bu(t),

ys(t) = Cxs(t),
(29)

with E , A, B and C being defined in (20)–(22). Then we can say that the NS Σ

can be approximated by a DS Σs in (29), i.e., G(s) ≈ C(sE − A)−1 B, which further
gives (19). �

By matching approximated moments in (19), we get the ROM immediately.

Theorem 1 The n̂th reduced-order DS to approximate the NS Σ , is given by

Σ̂s : V T E V
.

x̂s(t) = V T AV x̂s(t) + V T Bu(t),

ŷs(t) = CV x̂s(t),

where V is obtained by

colspan(V ) ⊇ Kr
((

A−1 E
)
, A−1 B, n̂

)
, V T V = I. (30)

Proof The projection matrix V is defined in (30) by the same method in [2]. From
(30) and by taking the same steps in [35], we have

M̂i = −CV
((

V T AV
)−1

V T E V
)i((

V T AV
)−1

V T B
)

= −C
(

A−1 E
)i(A−1 B

)
, i = 0, . . . , n̂ − 1.

Thus, the DS Σ̂s matches the first n̂ moments of the DS Σs , which gives an approxi-
mation to the NS Σ . �

Remark 1 By Padé approximation of e−shi and e−sdj , the MOR problem of the NS Σ

is transformed to the MOR problem of the DS Σs without delay. The main advantage
is that the standard state space techniques can be applied to the ROM directly in
the DS Σs for the analysis and simulation. Furthermore, practical application of a
reduced-order DS is more convenient than ROM with delay as traditional software for
simulation is all for delay-free systems. However, the order of the DS Σs , ñ = n(1 +∑p

i=1 βhi
+ ∑q

j=1 βdj
) in (27) is determined by the order of Padé approximation of

e−shi and e−sdj , and is higher than n, especially when p and q are large. So the result
in Theorem 1 is more suitable for the NS with small p and q , or the case that the
ROM should be delay-free system.

Remark 2 When Adj
= 0, j = 1, . . . , q , the NS Σ becomes a RS Σrs ,

Σrs : Eẋ(t) = Ax(t) +
p∑

i=1

Ahi
x(t − hi) + Bu(t),

y(t) = Cx(t),

(31)
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and the result in Theorem 1 is also applicable to the RS Σrs by deleting columns,
rows and elements related to Adj

from (20)–(22). Theorem 1 is also true when Ahi
=

Adj
= 0, which is the MOR result by moment matching for the DS in [35].

3 ROM by Taylor Series Expansion

3.1 Moment Matching Around s0 = 0

The inverse formula shown below is needed for later development.

Lemma 2 (See [12], p. 679) The inverse of X0 + sX1 + s2X2 + · · · + sr−1Xr−1 is
given by

(
X0 + sX1 + s2X2 + · · · + sr−1Xr−1

)−1

= (
I + X−1

0

(
sX1 + s2X2 + · · · + sr−1Xr−1

))−1
X−1

0

=
( ∞∑

k=0

Mks
k

)
X−1

0 ,

where

Mk = −
k−1∑

j=0

X−1
0 Xk−jMj , M0 = I.

In order to approximate GX(s) around s0 = 0,

Γ0 = −A −
p∑

i=1

Ahi
, (32)

is assumed to be invertible. When the NS Σ reduces to the DS Σds in (6), the non-
singular assumption of Γ0 = −A becomes the standard assumption for moments’
computation of the DS in (7). In the following proposition, we approximate GX(s)

around s0 = 0, by combining the idea of approximating exponential terms e−shi and
e−sdj , i = 1, . . . , p, j = 1, . . . , q , by their Taylor series expansions in [42, p. 834]
and the inverse formula in Lemma 2. Gi in (10) are expressed by the matrices having
the same dimension as the original NS Σ . A lower-order NS is obtained by matching
these Gi in (10).

Proposition 2 GX(s) is approximated around s0 = 0 by

GX(s) ≈ Gapp(s) =
( ∞∑

k=0

Lks
k

)
Γ −1

0 B, (33)
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where

Lk = −
k−1∑

j=0

Γ −1
0 Γk−jLj , L0 = I, (34)

Γ1 = E −
p∑

i=1

(−hi)Ahi
−

q∑

j=1

Adj
, (35)

Γk = −
p∑

i=1

(−hi)
k

k! Ahi
−

q∑

j=1

(−dj )
k−1

(k − 1)! Adj
, k ≥ 2. (36)

Proof We first expand exponential terms e−shi and e−sdj , i = 1, . . . , p, j = 1, . . . , q ,
by their Taylor series expansions around s0 = 0 [42, p. 834],

e−shi =
∞∑

k=0

(−hi)
k

k! sk and e−sdj =
∞∑

k=0

(−dj )
k

k! sk,

which render

sE−A−
p∑

i=1

Ahi
e−shi −

q∑

j=1

Adj
se−sdj = Γ0 +sΓ1 +s2Γ2 +· · ·+snΓn +· · · , (37)

where Γk , k = 0,1, . . ., are defined in (32), (35) and (36). If we truncate the right
hand side of (37) to only the first r ≥ n̂ terms, we get

GX(s) ≈ Gapp(s) = (
Γ0 + sΓ1 + s2Γ2 + · · · + sr−1Γr−1

)−1
B. (38)

Then (33) can be get directly by applying the inverse formula in Lemma 2 to
Gapp(s). �

From Proposition 2, the Krylov subspace for the NS Σ is approximated by coeffi-
cient matrices of Gapp(s) in (38) in the following proposition.

Proposition 3 The Krylov subspace around 0 for the NS Σ is approximated by

K(0,Σ, n̂) = colspan
{
L0Γ

−1
0 B,L1Γ

−1
0 B, . . . ,Ln̂−1Γ

−1
0 B

}
.

Remark 3 In the case of Ahi
= Adj

= 0, i = 1, . . . , p, j = 1, . . . , q , K(0,Σ, n̂) be-
comes K(0,Σds, n̂) in (8). So, Proposition 3 not only provides an approximation to
the Krylov subspace for NS, but also gives an extension of Krylov subspace from the
DS [7] to the NS.

Similar to the idea of generating the projection matrix V (colspan(V )⊇ K(0,Σds, n̂),
V T V = I ) for the MOR of the DS [35] or the single parameter linear system [12],
the projection matrix V is obtained by

colspan(V ) ⊇ K(0,Σ, n̂), V T V = I, (39)

to get the reduced-order system Σ̂ in (40).
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Theorem 2 The n̂th reduced-order NS is given by

Σ̂ :
.

x̂(t) = V T AV x̂(t) +
p∑

i=1

V T Ahi
V x̂(t − hi)

+
q∑

j=1

V T Adj
V

.

x̂(t − dj ) + V T B̂u(t),

ŷ(t) = CV x̂(t).

(40)

Proof From Proposition 2, X(s) can be approximated by

X(s) = GX(s)U(s)

≈ (
Γ0 + sΓ1 + s2Γ2 + · · · + sr−1Γr−1

)−1
BU(s)

=
( ∞∑

k=0

Lks
k

)
Γ −1

0 BU(s) = θ(s),

where U(s) is the Laplace transform of u(t). Inspiring from [12, 35], we want to
find a projection matrix V in (39) by matching the first n̂ terms of the approximated
GX(s), which are also first n̂ coefficients of θ(s). By assuming θ(s) = V θ̂(s), and
considering

(
Γ0 + sΓ1 + s2Γ2 + · · · + sr−1Γr−1

)
θ(s) = BU(s)

we obtain

V T
(
Γ0 + sΓ1 + s2Γ2 + · · · + sn̂−1Γn̂−1

)
V θ̂(s) = V T BU(s),

Y (s) ≈ CV θ̂(s),

where Y(s) is the Laplace transform of y(t). From the expression of Γk , k =
0,1, . . . , n̂ − 1, in (32), (35) and (36), it is easy to show that

V T
(
Γ0 + sΓ1 + s2Γ2 + · · · + sn̂−1Γn̂−1

)
V θ̂(s)

= V T

(
−A −

p∑

i=1

Ahi

)
V + sV T

(
E −

p∑

i=1

(−hi)Ahi
−

q∑

j=1

Adj

)
V

+ · · · + sn̂−1V T

(
−

p∑

i=1

(−hi)
n̂−1

(n̂ − 1)! Ahi
−

q∑

j=1

(−dj )
n̂−2

(n̂ − 2)! Adj

)
V

= sV T EV − V T AV −
p∑

i=1

V T Ahi
V − s

p∑

i=1

V T (−hi)Ahi
V

− · · · − sn̂−1
p∑

i=1

(−hi)
n̂−1

(n̂ − 1)! V T Ahi
V
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− s

(
q∑

j=1

V T Adj
V − s

q∑

j=1

(−dj )V
T Adj

V

− · · · − sn̂−2
q∑

j=1

(−dj )
n̂−2

(n̂ − 2)! V T Adj
V

)

≈ sV T EV − V T AV −
p∑

i=1

V T Ahi
V e−shi − s

q∑

j=1

V T Adj
V e−sdj .

Consequently, it follows that

V T
(
Γ0 + sΓ1 + s2Γ2 + · · · + sn̂−1Γn̂−1

)
V θ̂(s)

≈
(

sV T EV − V T AV −
p∑

i=1

V T Ahi
V e−shi − s

q∑

j=1

V T Adj
V e−sdj

)
θ̂ (s)

= V T BU(s)

which is equivalent to the reduced-order NS Σ̂ , where x̂(t) is the inverse Laplace
transform of θ̂ (s). �

Corollary 1 The result in Theorem 2 is still true for the RS Σrs in (31) by taking
Adj

= 0, j = 1, . . . , q , from (35) and (36). In the case of p = q = 1, the projection
matrix V in (39) is given by

colspan(V ) ⊇ K(0,Σ, n̂), V T V = I,

Lk = −
k−1∑

j=0

Γ −1
0 Γk−jLj , L0 = I,

Γ0 = −A − Ah1, Γ1 = E + h1Ah1 − Ad1 ,

Γk = − (−h1)
k

k! Ah1 − (−d1)
k−1

(k − 1)! Ad1 , k ≥ 2.

Remark 4 The MOR result in [42] considers the reduction of a special kind of RS
with C = BT . The moments of this special RS are approximated by the moments of
a large scale DS with system matrices given by

C̄ =

⎡

⎢⎢⎢⎣

Γ1 Γ2 · · · Γr

In

. . .

In 0

⎤

⎥⎥⎥⎦ ∈ R
rn×rn, Ḡ =

⎡

⎢⎢⎢⎣

Γ0
−In

. . .

−In

⎤

⎥⎥⎥⎦ ∈ R
rn×rn,

L̄ = [
BT 0 · · · 0

]T ∈ R
rn×m,

where r is defined in (38). This will result in two obvious shortcomings. One is that
the dimension of ROM may be higher than the original RS as low-order ROM may
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cause large error. The other is that high-order system matrices C̄ , Ḡ and L̄ make this
method fail to reduce higher-order RS as the storage of C̄ , Ḡ and L̄ can be memory-
demanding. Fortunately, Proposition 2 avoids this by using the inverse formula in
Lemma 2 to produce moments having the same dimension as the original NS. The
comparison with the result in [42, p. 834] is shown in Examples 2 and 3 in Sect. 4.

Remark 5 The MOR problems with ROM in NS form are also investigated in [43]
and [45], respectively, by guaranteeing that the H∞ norm or energy-to-peak gain of
the error system is less than a given scalar in terms of LMIs with inverse constraints.
It is solved by CCL algorithm [13] by transforming it to a minimization problem
subject to original LMIs and additional LMIs coming from the inverse constraints,
which are further solved by IPM. However, IPM requires that all matrix variables
are transformed to a very huge vector variable in [8]. Obviously, this may render an
out of memory problem due to large size matrix variables, and this further results in
IPM not being able to handle large scale LMIs. Moreover, the computational cost of
solving LMIs with inverse constraints is very high because of solving a minimization
problem. Although LMI-based method provides a good approximation of the original
NS by ensuring global accuracy, as a trade-off, high computational cost makes it
inapplicable to reduce high-order NS with MCDs. The comparison with the methods
in [43] and [45] is given in Example 4 in Sect. 4.

3.2 Extension to the Point s0 �= 0 and multi-point moment matching

The result in Theorem 2 is extended to a nonzero point s0 in the following theorem.
Assume that

Υ0(s0) = s0E − A −
p∑

i=1

e−s0hi Ahi
−

q∑

j=1

s0e
−s0dj Adj

, (41)

is nonsingular in order to approximate GX(s) around s0.

Theorem 3 The projection matrix V is obtained from the approximated Krylov sub-
space around s0

colspan(V ) ⊇ K(s0,Σ, n̂), V T V = I, (42)

the n̂th reduced-order NS is given by

Σ̂ :
.

x̂(t) = V T AV x̂(t) +
p∑

i=1

V T Ahi
V x̂(t − hi)

+
q∑

j=1

V T Adj
V

.

x̂(t − dj ) + V T B̂u(t),

ŷ(t) = CV x̂(t),
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where

K(s0,Σ, n̂) = colspan
{
J0(s0)Υ

−1
0 (s0)B,J1(s0)Υ

−1
0 (s0)B, . . . , Jn̂−1(s0)Υ

−1
0 (s0)B

}
,

(43)

Jk(s0) = −
k−1∑

j=0

Υ −1
0 (s0)Υk−j (s0)Jj (s0), J0(s0) = I, (44)

Υ1(s0) = E −
p∑

i=1

(−hi)e
−s0hi Ahi

−
q∑

j=1

(
s0(−dj ) + 1

)
e−s0dj Adj

, (45)

Υk(s0) = −
p∑

i=1

(−hi)
k

k! e−s0hi Ahi
−

q∑

j=1

(
s0

(−dj )
k

k! + (−dj )
k−1

(k − 1)!
)

e−s0dj Adj
,

k ≥ 2. (46)

Proof By expanding e−shi and e−sdj , i = 1, . . . , p, j = 1, . . . , q , by their Taylor se-
ries expansions around s0,

e−shi =
∞∑

k=0

e−s0hi
(−hi)

k

k! (s − s0)
k and e−sdj =

∞∑

k=0

e−s0dj
(−dj )

k

k! (s − s0)
k,

we have

sE − A −
p∑

i=1

Ahi
e−shi −

q∑

j=1

Adj
se−sdj

= sE − A −
p∑

i=1

Ahi
e−shi −

q∑

j=1

s0Adj
e−sdj −

q∑

j=1

(s − s0)Adj
e−sdj

= (s − s0)E + s0E − A −
p∑

i=1

Ahi

∞∑

k=0

e−s0hi
(−hi)

k

k! (s − s0)
k

−
q∑

j=1

s0Adj

∞∑

k=0

e−s0dj
(−dj )

k

k! (s − s0)
k

−
q∑

j=1

Adj

∞∑

k=0

e−s0dj
(−dj )

k

k! (s − s0)
k+1

= s0E − A −
p∑

i=1

e−s0hi Ahi
−

q∑

j=1

s0e
−s0dj Adj

+ (s − s0)

(
E −

p∑

i=1

(−hi)e
−s0hi Ahi

−
q∑

j=1

(
s0(−dj ) + 1

)
e−s0dj Adj

)
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+ (s − s0)
2

(
−

p∑

i=1

(−hi)
2

2! e−s0hi Ahi
−

q∑

j=1

(
s0

(−dj )
2

2! + (−dj )

1!
)

e−s0dj Adj

)

+ · · · + (s − s0)
n

(
−

p∑

i=1

(−hi)
n

n! e−s0hi Ahi

−
q∑

j=1

(
s0

(−dj )
n

n! + (−dj )
n−1

(n − 1)!
)

e−s0dj Adj

)
+ · · ·

= Υ0(s0) + (s − s0)Υ1(s0) + (s − s0)
2Υ2(s0) + · · · + (s − s0)

nΥn(s0) + · · · ,

where Υk , k = 0,1, . . ., are defined in (41), (45) and (46). Then the proof can be
finished similarly to the proof in Proposition 2 and Theorem 2. �

Theorem 3 can be further extended to the multi-point case.

Corollary 2 The projection matrix V in (42) obtained from the approximated Krylov
subspace around multiple points, s1, s2, . . . , sg is given by

colspan(V ) ⊇
g⋃

i=1

K(si,Σ, n̂), V T V = I,

where K(si,Σ, n̂), i = 1, . . . , g, are defined in (43).

4 Numerical Examples

All the computation described in this section is performed in Intel Core 2 Quad pro-
cessors with CPU 2.66 GHz and 2.87 GB memory. The first example is to show that
with the same order of the ROM, Taylor series expansion method is better than Padé
approximation method although it provides a delay-free ROM with better simulation
and analysis than systems with delay via the standard state space techniques.

Example 1 An artificial NS Σ of order 24 with a single delay in the state and a single
delay in the derivative of the state is considered to be reduced. It has two inputs and
two outputs. The 8th order Padé approximation is chosen to approximate exponential
terms in the original NS, which gives a transformed DS with order 408 by Proposi-
tion 1. A fourth-order ROM modeled by the DS is derived from Theorem 1. If expo-
nential terms are approximated by their Taylor series expansions via truncating them
to the first 4 terms, a fourth-order NS from Theorem 2 is obtained. The time domain
responses, time domain errors and relative errors are compared in Fig. 1 with an in-
put u(t) = e−1.5t sin(2t)[1 1]T . The frequency domain response comparison in terms
of the maximal singular value (MSV) of the transfer functions is shown in Fig. 2.
The above figures show that ROM from Taylor series expansion method captures the
original NS better than the ROM by Padé approximation method. Higher-order ROM
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Fig. 1 Time domain responses of Example 1. (a) Time domain responses. (b) Time domain errors.
(c) Time domain relative errors

Fig. 2 Frequency domain responses of Example 1. (a) Frequency domain responses. (b) Frequency do-
main errors. (c) Frequency domain relative errors
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Fig. 3 Time domain responses of Example 2. (a) Time domain responses. (b) Time domain errors.
(c) Time domain relative errors

by Padé approximation method may result in better matching of the original system
(see Remark 1 for the details).

This example will show that multi-point moment matching is better than single-
point moment matching especially when the frequency domain response of the orig-
inal system has multiple local minima and maxima.

Example 2 A RS is constructed by borrowing E = I1006, A, B and C from FOM ex-
ample in [10] and assuming Ah1 = 0.1I1006 and h1 = 1. The method in [42] fails due
to out of memory (see Remark 4 for the details). From Theorems 2 and 3, and Corol-
lary 2, the time domain comparison in Fig. 3 with an input u(t) = e−t sin(8t) shows
that the 16th-order RS by multi-point moment matching gives a better approxima-
tion than the 16th-order RS by matching moments around zero only. The frequency
domain responses, frequency domain errors and frequency domain relative error in
Fig. 4 also draw the same conclusion.

Example 3 In this example, a network composing of five lands and 50 conductors
transmission line, representing the delay element, and a circuit with RLC compo-
nents, has been considered for reduction. The network is modeled by a RS with order
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Fig. 4 Frequency domain responses of Example 2. (a) Frequency domain responses. (b) Frequency do-
main errors. (c) Frequency domain relative errors

602 with four delays in the states. The method in [42] cannot be applied to this exam-
ple due to out of memory, too. By the proposed method in Theorem 2, a reduced-order
RS with order 30 is given by approximating exponential terms by the first 30 terms
of their Taylor series expansions. The time domain responses, time domain error and
relative error are plotted in Figs. 5 with u(t) = sin(1012t). Moreover, Figs. 6 and 7
show the frequency domain responses, frequency errors and relative errors in low
and high frequencies, respectively. It is clear that the reduced-order NS matches the
original system very well.

The comparison with the existing LMI-based method in [43, 45] for reduction of
NSs and method in [42] for reducing RS is given in the following example.

Example 4 Four examples are used to for comparison. The above three examples are
used and another example is from a small PEEC model borrowed from [6, 24]. The
system matrices A, Ah1 and Ad1 and the delays h1 and d1 are given in [6]. B and C

are chosen to be

B = [
1 1 0

]
, C =

[
0 1 1
1 1 0

]
.
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Fig. 5 Time domain responses of Example 3. (a) Time domain responses. (b) Time domain errors.
(c) Time domain relative errors

The time domain and frequency domain comparisons are given in Figs. 8 and 9
with time domain input u(t) = cos(5t). Clearly the ROM from the proposed method
matches the original system better than the ROM from LMI-based method. Moreover,
the proposed method in Theorem 2 by constructing a projection matrix to match the
approximated moments uses less time than the LMI-based method shown in Table 1.
We also conclude from Table 1 that LMI-based method cannot reduce the NS with
more than order 24 due to out of memory problem (see the details in Remark 5). The
method in [42] has the same problem in reducing RS with order 1006. The conclu-
sion is that the proposed method in this paper has more practical use especially in
reducing large scale NSs.

5 Conclusions

In this paper, the moment matching method is used to get two different kinds of ROM
to approximate a NS with MCDs depending on ways of approximating exponential
terms in the transfer function of the original NS. The Padé approximation of exponen-
tial terms renders a delay-free system modeled by the high-order DS, with the obvious
price to be paid of higher storage and computational complexity. However, delay-free
ROM facilitates the analysis and application of the standard state space techniques as
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Fig. 6 Frequency domain responses at low frequency of Example 3. (a) Frequency domain responses at
low frequency. (b) Frequency domain errors at low frequency. (c) Frequency domain relative errors at low
frequency

Table 1 Comparison with other methods

Examples n n̂ Proposed (Thm. 2) LMI-based method in [43, 45] Method in [42]

Example in [6] 3 1 0.0007 sec 5.5628 sec Not applicable

Example 1 24 4 0.0046 sec Out of memory Not applicable

Example 2 (single) 1006 16 33.0147 sec Out of memory Out of memory

Example 2 (multiple) 1006 16 135.2990 sec Out of memory Out of memory

Example 3 602 30 136 sec Out of memory Out of memory

most of the traditional software for simulation is for delay-free systems. The other
ROM has the same structure of the original NS by using Taylor series expansion to
replace exponential terms. The most important advantage is that approximated mo-
ments have the same dimension as the original NS, which makes this method capable
of reducing higher-order NSs. The proposed results can be applied to RSs directly
by deleting the matrices related to the derivative of the delayed state. Numerical ex-
amples have demonstrated that the Taylor series expansion-based MOR method is
much more suitable to reduce high-order NSs than existing MOR methods. Further
research will focus on the ROM with stability and passivity preservation by adding
additional constraints.
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Fig. 7 Frequency domain responses at low frequency of Example 3. (a) Frequency domain responses at
high frequency. (b) Frequency domain errors at high frequency. (c) Frequency domain relative errors at
high frequency.

Fig. 8 Time domain responses of Example 4. (a) Time domain responses. (b) Time domain errors.
(c) Time domain relative errors
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Fig. 9 Frequency domain responses of Example 4. (a) Frequency domain responses. (b) Frequency do-
main errors. (c) Frequency domain relative errors
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