Skip to main content
Log in

A Blind Frequency Offset Estimator for Coherent M-PSK System in Autonomous Radio

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel blind frequency offset estimator for coherent M-PSK systems in an autonomous radio. The proposed estimator is based on the spectrum of the signal’s argument. A data removal block is developed. We derive the distribution of the instantaneous phase, which is applied to indicate that the proposed estimator can be considered as a class of nonlinear least-squares estimator. We provide a method to analyze the asymptotic performance of the proposed estimator. This enable us to predict the mean-square error on frequency offset estimation for all signal-to-noise ratio (SNR) values. Computer simulations indicate that the proposed estimator achieves better performance than the original estimator. The performance of the proposed estimator as a blind estimator is also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Candan, A method for fine resolution frequency estimation from three DFT samples. IEEE Signal Process. Lett. 18(6), 351–354 (2011)

    Article  Google Scholar 

  2. Y.W. Cao, S. Yu, J. Shen, W.Y. Gu, Y.F. Ji, Frequency estimation for optical coherent MPSK system without removing modulated data phase. IEEE Photonics Technol. Lett. 22(10), 691–693 (2010)

    Article  Google Scholar 

  3. H.B. Celebi, H.B. Arslan, A joint blind carrier frequency and phase offset detector and modulation order identifier for MPSK signals, in IEEE Radio and Wireless Symposium 2010, New Orleans, USA, January (2010), pp. 348–351

    Chapter  Google Scholar 

  4. W. Dai, Y.Z. Wang, J. Wang, Joint power estimation and modulation classification using second- and higher statistics, in IEEE Wireless Communications and Networking Conference, Orlando, USA, March (2002), pp. 155–158

    Google Scholar 

  5. L.F. Han, Y. Guo, Y.B. Shang, A QPSK carrier estimation method based on modified FFT, in 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, China, September (2009), pp. 397–400

    Google Scholar 

  6. Y.L. Huang, Q. Yuan, Y.R. Lu, Carrier frequency offset estimation based on the wrapped phase entropy, in IEEE International Conference on Communications (ICC 2008), Beijing, China, May (2008), pp. 936–940

    Chapter  Google Scholar 

  7. E. Jacobsen, P. Kootsookos, Fast, accurate frequency estimators. IEEE Signal Process. Mag. 24(3), 123–125 (2007)

    Article  Google Scholar 

  8. F. Mazzenga, G.E. Corazza, Blind least-squares estimation of carrier phase, doppler shift, and doppler rate for m-PSK burst transmission. IEEE Commun. Lett. 2(3), 73–75 (1998)

    Article  Google Scholar 

  9. U. Mengali, M. Morelli, Data-aided frequency estimation for burst digital transmission. IEEE Trans. Commun. 45(1), 23–25 (1997)

    Article  Google Scholar 

  10. M. Pedzisz, A. Coatanhay, Minimum entropy approach for carrier frequency recovery. IEEE Trans. Wirel. Commun. 5(4), 774–778 (2006)

    Article  Google Scholar 

  11. D.C. Rife, R.R. Boorstyn, Single-tone parameter estimation from discrete-time observations. IEEE Trans. Inf. Theory 20(5), 591–598 (1974)

    Article  MATH  Google Scholar 

  12. M. Simon, J. Hamkins, Autonomous Software-defined Radio Receivers for Deep Space Applications (Wiley, New York, 2006)

    Google Scholar 

  13. D. Taich, I. Bar-David, Maximum-likelihood estimation of phase and frequency of MPSK signals. IEEE Trans. Inf. Theory 45(7), 2652–2655 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. D.N. Vizireanu, A fast, simple and accurate time-varying frequency estimation method for single-phase electric power systems. Measurement 45(5), 1331–1333 (2012)

    Article  Google Scholar 

  15. D.N. Vizireanu, S.V. Halunga, Analytical formula for three points sinusoidal signals amplitude estimation errors. Int. J. Electron. 99(1), 149–151 (2012)

    Article  Google Scholar 

  16. S.V. Vizireanu, S.V. Halunga, Single sine wave parameters estimation method based on four equally spaced samples. Int. J. Electron. 98(7), 941–948 (2011)

    Article  Google Scholar 

  17. D.N. Vizireanu, S.V. Halunga, Simple, fast and accurate eight points amplitude estimation method of sinusoidal signals for DSP based instrumentation. J. Instrum. 7(4), 1–10 (2012)

    Article  Google Scholar 

  18. A.J. Viterbi, A.M. Viterbi, Non-linear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans. Inf. Theory 29(4), 543–551 (1983)

    Article  MATH  Google Scholar 

  19. Y. Wang, E. Serpedin, P. Ciblat, Optimal blind carrier recovery for MPSK burst transmissions. IEEE Trans. Commun. 51(9), 1571–1581 (2003)

    Article  Google Scholar 

  20. T. Yucek, H. Arslan, Spectrum characterization for opportunistic cognitive radio systems, in Military Communications Conference 2006, Washington, D.C., USA, October (2006), pp. 2757–2762

    Google Scholar 

  21. X. Zhou, X. Chen, K.P. Long, Wide-range frequency offset estimation algorithm for optical coherent systems using training sequence. IEEE Photonics Technol. Lett. 24(1), 82–84 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National High Technology Research and Development Program of China (Grant No. 2011AA7014053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Wang.

Appendix

Appendix

We assume that

$$ \tan(z)=\frac{x+A\sin(\varphi)}{y+A\cos(\varphi)}, $$
(16)

where x and y are equal to q R and q I , respectively. The joint probability of x and y is given by

$$ p(x,y)=\frac{1}{2\pi\sigma^2}\exp \biggl\{-\frac{1}{2\sigma^2}\bigl(x^2+y^2 \bigr) \biggr\}. $$
(17)

In order to simplify the derivation, we divide the range of z into three parts. Thus, we can write the expression of p(z) as follows:

$$p(z)= \left \{ \begin{array}{l@{\quad}l} p_1(z), & -\pi<z<-\pi/2,\\ p_2(z), & -\pi/2\le z\le\pi/2,\\ p_3(z), & \pi/2 < z < \pi. \end{array} \right . $$

We derive the p 2(z) and the other two use the same method. From (16), we obtain

$$ x=\tan(z)\bigl[y+A\cos(\varphi)\bigr]-A\sin(\varphi). $$
(18)

According to (17) and (18), p 2(z) can be written as

$$\begin{aligned} p_2(z)&=\frac{1}{2\pi\sigma^2}\int_{-A\cos(\varphi)}^{\infty }\bigl \vert y+A\cos(\varphi)\bigr \vert \\ &\quad{}\times\exp \biggl\{ -\frac{1}{2\sigma^2} \bigl \{y^2+\bigl[\tan(z) \bigl(y+A\cos(\varphi )\bigr)-A\sin(\varphi) \bigr]^2 \bigr\} \biggr\}\,dy \\ &=\frac{1}{2\pi\sigma^2}\int_{-A\cos(\varphi)}^{\infty} \frac {1}{\cos^2(z)}\bigl[y+b+\bigl(A\cos (\varphi)-b\bigr)\bigr]\\ &\quad{}\times\exp \biggl\{- \frac{1+\tan^2(z)}{2\sigma^2}\bigl[(y+b)^2+a\bigr] \biggr\}\,dy \end{aligned} $$

where

Then, we get

$$p_2(z)=\frac{1}{2\pi}e^{-r}+\frac{1}{2}\sqrt{ \frac{r}{\pi}}\cos (z-\varphi)erfc\bigl(-\sqrt{r}\cos(z- \varphi) \bigr)e^{r\sin^2(z-\varphi)}. $$

Derive p 1(z) and p 3(z) following the same method, we get the same expression as p 2(z). Thus,

(19)

Let

$$\left \{ \begin{array}{l} \mathbf{E}_\mathbf{1}=\{E\{z'(0)\},E\{z'(1)\},\ldots,E\{z'(N-1)\}\}\\[6pt] \mathbf{E}_\mathbf{2}=\{E\{z'^2(0)\},E\{z'^2(1)\},\ldots,E\{z'^2(N-1)\}\}\\[6pt] \mathbf{S}= \{0,\sin (\frac{2\pi k}{N} ),\ldots,\sin (\frac{2\pi k(N-1)}{N} ) \}\\[6pt] \mathbf{V}= \{0,\cos (\frac{2\pi k}{N} ),\ldots,\cos (\frac{2\pi k(N-1)}{N} ) \}; \end{array} \right . $$

z(n) is not the stationary process, and the values of E 1 and E 2 can be computed through p(z). Let m=2D; we get

(20)
(21)

where

$$\lfloor x\rfloor= \left \{ \begin{array}{l@{\quad}l} -\pi, & x<-\pi,\\ \pi, & x>\pi,\\ x, & \mathrm{others}. \end{array} \right . $$

In order to compute the integrals in (20) and (21), we extend p(z) into Fourier series, which can be written as

$$ p(z)=\frac{1}{2\pi} \Biggl[1+2\sum_{i=1}^{\infty}b_i(r) \cos(iz) \Biggr], $$
(22)

with the Fourier series coefficients [10]

$$ b_i(r)=\frac{\sqrt{\pi r}}{2}e^{-r/2} \biggl[I_{\frac{i-1}{1}} \biggl(\frac{r}{2} \biggr)+I_{\frac{i+1}{1}} \biggl( \frac{r}{2} \biggr) \biggr], $$
(23)

where I i (⋅) is the first kind modified Bessel function of order i. The integrals of E 1 and E 2 become integrable.

According to (16), we get

where sum(E 2 ) is sum of all the elements in E 2 .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wang, Z. & Xiong, W. A Blind Frequency Offset Estimator for Coherent M-PSK System in Autonomous Radio. Circuits Syst Signal Process 32, 1205–1217 (2013). https://doi.org/10.1007/s00034-012-9494-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9494-y

Keywords

Navigation