Skip to main content
Log in

Design of Biorthogonal Filter Banks Using a Multi-objective Genetic Algorithm for an Image Coding Scheme

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we present an optimization method based on a multi-objective Genetic Algorithm (GA) for the design of linear phase filter banks for an image coding scheme. To be effective, the filter banks should satisfy a number of desirable criteria related to such a scheme. Instead of imposing the entire PR condition as in conventional designs, we introduce flexibility in the design by relaxing the Perfect Reconstruction (PR) condition and defining a PR violation measure as an objective criterion to maintain near perfect reconstruction (N-PR) filter banks. Particularly in this work, the designed filter banks are near-orthogonal. This has been made possible by minimizing the deviation from the orthogonality in the optimization process. The optimization problem is formulated as a constrained multi-objective, and a modified Nondominated Sorting Genetic Algorithm NSGAII is proposed in this work to find the Pareto optimal solutions that achieve the best compromise between the different objective criteria. The experimental results show that the filter banks designed with the proposed method outperform significantly the 9/7 filter bank of JPEG2000 in most cases. Furthermore, the filter banks are near orthogonal. This is very helpful, especially where embedded coding is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.D. Adams, Home page (2006), http://www.ece.uvic.ca/~mdadams

  2. M.D. Adams, D. Xu, Optimal design of high-performance separable wavelet filter banks for image coding. Signal Process. 90, 180–196 (2010)

    Article  MATH  Google Scholar 

  3. M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, Image coding using wavelet transform. IEEE Trans. Image Process. 1(2), 205–220 (1992)

    Article  Google Scholar 

  4. I. Balasingham, On optimal perfect reconstruction filter banks for image compression. Ph.D. Thesis, Norwegian University of Science and Technology (1998)

  5. S.C. Chan, C.K.S. Pun, K.L. Ho, The design of a class of perfect reconstruction two-channel FIR linear-phase filter banks and wavelets bases using semidefinite programming. IEEE Signal Process. Lett. 11(2), 297–300 (2004)

    Article  Google Scholar 

  6. C.A. Coello Coello, G.B. Lamont, D.A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-objective Problems, 2nd edn. (Springer, New York, 2007)

    MATH  Google Scholar 

  7. A. Cohen, I. Daubechies, J.C. Feauveau, Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Deb, An efficient constraint-handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Article  MATH  Google Scholar 

  9. K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  10. K. Deb, S. Agrawal, Understanding interactions among genetic algorithm parameters, in Foundations of Genetic Algorithms V, ed. by W. Banzhaf, C. Reeves (Morgan Kauffman, San Mateo, 1998), pp. 265–286

    Google Scholar 

  11. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  12. B.R. Horng, A.N. Willson, Lagrange multiplier approaches to the design of two-channel perfect-reconstruction linear-phase FIR filter banks. IEEE Trans. Signal Process. 40(2), 364–374 (1992)

    Article  Google Scholar 

  13. ISO/IEC JTC 1/SC 29/WG 1 N 545: JPEG-2000 Test Images (1997)

  14. ISO/IEC JTC 1/SC 29/WG 1 N 1020R: EBCOT: Embedded Block Coding with Optimized Truncation (1998)

  15. ISO/IEC 15444-1: Information Technology—JPEG 2000 Image Coding System—Part 1: Core Coding System (2000)

  16. J. Katto, Y. Yasuda, Performance evaluation of subband coding and optimization of its filter coefficients, in Proc. of SPIE Visual Comm. and Image Process (1991), pp. 95–106

    Google Scholar 

  17. J. Katto, K. Komatsu, Y. Yasuda, Short-tap and linear-phase PR filter banks for subband coding of images, in Proc. of SPIE Visual Comm. and Image Process (1992), pp. 735–746

    Google Scholar 

  18. M. Lightstone, E. Majani, Low bit-rate design considerations for wavelet based image coding, in Proc. of SPIE Visual Comm. and Image Process (1994), pp. 501–512

    Google Scholar 

  19. M.M. Raghuwanshi, O.G. Kakde, Survey on multiobjective evolutionary and real coded genetic algorithms, in Proc. of the 8th Asia Pacific Symposium on Intelligent and Evolutionary Systems (2004), pp. 150–161

    Google Scholar 

  20. C.R. Reeves, J.E. Rowe, Genetic Algorithms—Principles and Perspectives. A Guide to GA Theory (Kluwer Academic, Boston, 2003)

    Google Scholar 

  21. O. Rioul, P. Duhamel, A Remez exchange algorithm for orthonormal wavelets. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 41(8), 550–560 (1994)

    Article  MATH  Google Scholar 

  22. Y. Shang, L. Li, B. Wah, Optimization design of biorthogonal filter banks for image compression. Inf. Sci. 123, 23–51 (2001)

    Article  Google Scholar 

  23. N. Srinivas, K. Deb, Multiobjective function optimization using nondominated sorting genetic algorithms. Evol. Comput. 2(3), 221–248 (1995)

    Article  Google Scholar 

  24. A.H. Tewfik, D. Sinha, P. Jorgensen, On the optimal choice of a wavelet for signal representation. IEEE Trans. Inf. Theory 38(2), 747–765 (1992)

    Article  MATH  Google Scholar 

  25. M. Unser, T. Blu, Mathematical properties of the JPEG2000 wavelet filters. IEEE Trans. Image Process. 12(9), 1080–1090 (2003)

    Article  MathSciNet  Google Scholar 

  26. M. Vetterli, J. Kovačević, Wavelet and Subband Coding (Prentice Hall, Englewood Cliffs, 1995)

    Google Scholar 

  27. J.D. Villasenor, B. Belzer, J. Liao, Wavelet filter evaluation for image compression. IEEE Trans. Image Process. 4(8), 1053–1060 (1995)

    Article  Google Scholar 

  28. E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Boukhobza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boukhobza, A., Bounoua, A., Taleb-Ahmed, A. et al. Design of Biorthogonal Filter Banks Using a Multi-objective Genetic Algorithm for an Image Coding Scheme. Circuits Syst Signal Process 32, 1725–1744 (2013). https://doi.org/10.1007/s00034-012-9534-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9534-7

Keywords

Navigation