Skip to main content
Log in

Current Differencing Cascaded Transconductance Amplifier (CDCTA) and Its Applications on Current-Mode nth-Order Filters

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new active device, current differencing cascaded transconductance amplifier (CDCTA), has been presented. The proposed CDCTA simplifies the design of the current-mode filter circuit considerably, especially the design of high-order filter. Moreover, a current-mode nth-order filter based on the CDCTA is proposed in the paper. The proposed circuit, which adopts only an active component and n grounded capacitors, contains minimal active component and passive one. It enjoys the simple configuration and is suitable for integrated circuit (IC) fabrication. PSpice simulations for current-mode third-order filter based on this structure have also been conducted, and the results are in good agreement with the theoretical analysis. The influences of the CDCTA non-idealities are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Acar, S. Ozoguz, A new versatile building block: current differencing buffered amplifier suitable for analog signal processing filters. Microelectron. J. 30, 157–160 (1999)

    Article  Google Scholar 

  2. A. Bekri, F. Anday, Nth-order low-pass filter employing current differencing transconductance amplifiers, in Proceedings of the 2005 European Conference on Circuit Theory and Design (2005), pp. 193–196

    Chapter  Google Scholar 

  3. D. Biolek, CDTA—building block for current-mode analog signal processing, in Proceedings of the European Conference on Circuit Theory and Design 2003—ECCTD’03, Poland (2003), pp. 397–400

    Google Scholar 

  4. D. Biolek, E. Hancioglu, A.U. Keskin, High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. AEÜ, Int. J. Electron. Commun. 62, 92–96 (2008)

    Article  Google Scholar 

  5. D. Biolek, E. Hancioglu, A.U. Keskin, High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. AEÜ, Int. J. Electron. Commun. 62, 92–96 (2008)

    Article  Google Scholar 

  6. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17(4), 15–32 (2008)

    Google Scholar 

  7. D. Biolek, V. Biolkova, Z. Kolka, Current-mode biquad employing single CDTA. Indian J. Pure Appl. Phys. 47, 535–537 (2009)

    Google Scholar 

  8. T. Deliyannis, Y. Sun, J.K. Fidler, Continuous-Time Active Filter Design (CRC Press, Boca Raton, 1999)

    Google Scholar 

  9. T. Dostal, V. Smejkal, J. Slezak, Realization of arbitrary transfer current characteristic using transconductors CDTA, in Radioelektronika, 2008 18th Internation Conference (2008), pp. 24–25

    Google Scholar 

  10. T. Dumawipata, W. Tangsrirat, W. Surakampontorn, Cascadable current-mode multifunction filter with two inputs and three outputs using CDTAs, in Information, Communications and Signal Processing, 2007 6th International Conference (2007), pp. 10–13

    Google Scholar 

  11. W. Jaikla, A. Lahiri, Resistor-less current-mode four-phase quadrature oscillator using CCCDTAs and grounded capacitors. AEÜ, Int. J. Electron. Commun. 66, 214–218 (2012)

    Article  Google Scholar 

  12. W. Jaikla, P. Prommee, Electronically tunable current-mode multiphase sinusoidal oscillator employing CCCDTA-based all-pass filters with only grounded passive elements. Radioengineering 20, 594–600 (2011)

    Google Scholar 

  13. W. Jaikla, M. Siripruchyanun, Current controlled CDTA (CCCDTA) based novel floating and grounded inductance simulators, in Communications and Information Technologies (2006), pp. 348–351

    Google Scholar 

  14. W. Jaikla, M. Siripruchyanun, J. Bajer, D. Biolek, A simple current-mode quadrature oscillator using single CDTA. Radioengineering 17(4), 33–40 (2008)

    Google Scholar 

  15. F. Kacar, H.H. Kuntman, A new CMOS current differencing transconductance amplifier (CDTA) and its biquad filter application, in Eurocon 2009: International IEEE Conference Devoted to the 150th Anniversary of Alexander S. Popov (2009), pp. 189–196

    Google Scholar 

  16. F. Kacar, H.H. Kuntman, A new, improved CMOS realization of CDTA and its filter applications. Turk. J. Electr. Eng. Comput. Sci. 19, 631–642 (2011)

    Google Scholar 

  17. A.U. Keskin, D. Biolek, Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc., Circuits Devices Syst. 153, 248–252 (2006)

    Article  Google Scholar 

  18. A.U. Keskin, D. Biolek, E. Hancioglu, V. Biolkova, Current-mode KHN filter employing current differencing transconductance amplifiers. AEÜ, Int. J. Electron. Commun. 60, 443–446 (2006)

    Article  Google Scholar 

  19. F. Khateb, D. Biolek, Bulk-driven current differencing transconductance amplifier. Circuits Syst. Signal Process. 30, 1071–1089 (2011)

    Article  Google Scholar 

  20. A. Lahiri, A. Chowdhury, A novel first-order current-mode all-pass filter using CDTA. Radioengineering 18(3), 300–306 (2009)

    Google Scholar 

  21. Y.A. Li, A modified CDTA (MCDTA) and its applications: designing current-mode sixth-order elliptic band-pass filter. Circuits Syst. Signal Process. 30(6), 1383–1390 (2011)

    Article  Google Scholar 

  22. Y.A. Li, A new single MCCCDTA based Wien-bridge oscillator with AGC. AEÜ, Int. J. Electron. Commun. 66, 153–156 (2012)

    Article  Google Scholar 

  23. A. Nedungadi, T. Viswanathan, Design of linear CMOS transconductance elements. IEEE Trans. Circuits Syst. 31, 891–894 (1984)

    Article  Google Scholar 

  24. D. Prasad, D.R. Bhaskar, A.K. Singh, Universal current-mode biquad filter using dual output current differencing transconductance amplifier. AEÜ, Int. J. Electron. Commun. 63, 497–501 (2009)

    Article  Google Scholar 

  25. D. Prasad, D.R. Bhaskar, A.K. Singh, Multi-function biquad using single current differencing transconductance amplifier. Analog Integr. Circuits Signal Process. 61, 309–313 (2009)

    Article  Google Scholar 

  26. C. Sakul, W. Jaikla, K. Dejhan, New resistorless current-mode quadrature oscillators using 2 CCCDTAs and grounded capacitors. Radioengineering 20, 890–898 (2011)

    Google Scholar 

  27. A. Sedra, K.C. Smith, A second generation current conveyor and its application. IEEE Trans. Circuit Theory 17(1), 132–134 (1970)

    Article  Google Scholar 

  28. N.A. Shah, M. Quadri, S.Z. Iqbal, CDTA based universal transadmittance filter. Analog Integr. Circuits Signal Process. 52, 65–69 (2007)

    Article  Google Scholar 

  29. N.A. Shah, M. Quadri, S.Z. Iqbal, Application of CDTA in the realisation of current-mode active filter. Electron. World 113, 42–43 (2007)

    Google Scholar 

  30. N.A. Shah, M. Quadri, S.Z. Iqbal, Current-mode multifunction filter using current differencing transconductance amplifier. Indian J. Pure Appl. Phys. 45, 767–769 (2007)

    Google Scholar 

  31. N.A. Shah, M. Quadri, S.Z. Iqbal, High output impedance current-mode all-pass inverse filter using CDTA. Indian J. Pure Appl. Phys. 46, 893–896 (2008)

    Google Scholar 

  32. N.A. Shah, M. Quadri, S.Z. Iqbal, Realization of CDTA based current-mode universal filter. Indian J. Pure Appl. Phys. 46, 283–285 (2008)

    Google Scholar 

  33. M. Siripruchyanun, W. Jaikla, CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. AEÜ, Int. J. Electron. Commun. 62, 277–287 (2008)

    Article  Google Scholar 

  34. M. Siripruchyanun, W. Jaikla, CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. AEÜ, Int. J. Electron. Commun. 62, 277–287 (2008)

    Article  Google Scholar 

  35. M. Siripruchyanun, W. Jaikla, Electronically controllable current-mode universal biquad filter using single DO-CCCDTA. Circuits Syst. Signal Process. 27, 113–122 (2008)

    Article  Google Scholar 

  36. M. Siripruchyanun, W. Jaikla, CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. AEÜ, Int. J. Electron. Commun. 62, 277–287 (2008)

    Article  Google Scholar 

  37. F.W. Stephenson, RC Active Filter Design Handbook (Wiley, New York, 1985)

    Google Scholar 

  38. W. Tangsrirat, Current-mode multiphase sinusoidal oscillator using CDTA-based all-pass sections. AEÜ, Int. J. Electron. Commun. 63, 616–622 (2009)

    Article  Google Scholar 

  39. W. Tangsrirat, T. Pukkalanun, Structural generation of two integrator loop filters using CDTAs and grounded capacitors. Int. J. Circuit Theory Appl. 39, 31–45 (2011)

    Article  MATH  Google Scholar 

  40. W. Tangsrirat, K. Klahan, T. Dumawipata, W. Surakampontorn, Low-voltage NMOS-based current differencing buffered amplifier and its application to current-mode ladder filter design. Int. J. Electron. 93, 777–791 (2006)

    Article  Google Scholar 

  41. W. Tangsrirat, T. Dumawipata, W. Surakampontorn, Multiple-input single-output current-mode multifunction filter using current differencing transconductance amplifiers. AEÜ, Int. J. Electron. Commun. 61, 209–214 (2007)

    Article  Google Scholar 

  42. W. Tangsrirat, T. Pukkalanun, W. Surakampontorn, Resistorless realization of current-mode first-order all-pass filter using current differencing transconductance amplifiers. Microelectron. J. 41, 178–183 (2010)

    Article  Google Scholar 

  43. W. Tanjaroen, W. Tangsrirat, Current-mode second-order notch filter using CDTA-based all-pass sections, in SICE Annual Conference (2008), pp. 1143–1146

    Chapter  Google Scholar 

  44. W. Tanjaroen, W. Tangsrirat, Resistorless current-mode first-order all-pass filter using CDTAs, in Electrical Engineering, Electronics, Computer, Telecommunications and Information Technology, vol. 2 (2008), pp. 721–724

    Google Scholar 

  45. W. Tanjaroen, T. Dumawipata, W. Tangsrirat, TISO cascadable current-mode multifunction filter employing current differencing transconductance amplifiers, in SICE-ICASE International Joint Conference (2006), pp. 5703–5706

    Chapter  Google Scholar 

  46. A. Uygur, H. Kuntman, Design of a current differencing transconductance amplifier (CDTA) and its application on active filters, in Signal Processing and Communications Applications Conference (2005), pp. 340–343

    Google Scholar 

  47. A. Uygur, H. Kuntman, Seventh-order elliptic video filter with 0.1 dB pass band ripple employing CMOS CDTAs. AEÜ, Int. J. Electron. Commun. 61, 320–328 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China for financially supporting this research under No. 61274020 and the Open Fund Project of Key Laboratory in Hunan Universities under No. 12K011. The authors are also thankful to the editor and anonymous reviewers for their valuable comments and helpful suggestions, which substantially improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Wang, C. & Jin, J. Current Differencing Cascaded Transconductance Amplifier (CDCTA) and Its Applications on Current-Mode nth-Order Filters. Circuits Syst Signal Process 32, 2047–2063 (2013). https://doi.org/10.1007/s00034-013-9565-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9565-8

Keywords

Navigation