Skip to main content
Log in

\(\mathcal{H}_{\infty}\) Control Synthesis for Short-Time Markovian Jump Continuous-Time Linear Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In many actual engineering applications, the Markovian jump among subsystems often occurs in some short finite-time intervals. For this class of Markovian jump systems, called short-time Markovian jump systems in this paper, the state boundedness during the short-time Markovian jump interval is of great interest. By introducing the concepts of finite-time stochastic stability and boundedness, sufficient conditions ensuring short-time Markovian jump system to be \(\mathcal{H}_{\infty}\) finite-time stochastic bounded are derived. Then, the control synthesis problem is studied, where both asymptotic stability and finite-time stochastic boundedness are considered. Finally, an LMI-based design algorithm is proposed to solve the control synthesis problem. Several numerical examples are given to illustrate the results proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q. Ahmed, A. Iqbal, I. Taj, K. Ahmed, Gasoline engine intake manifold leakage diagnosis/prognosis using hidden Markov model. Int. J. Innov. Comput. Inf. Control 8, 4661–4674 (2012)

    Google Scholar 

  2. F. Amato, M. Ariola, Finite-time control of discrete-time linear systems. IEEE Trans. Autom. Control 50, 724–729 (2005)

    Article  MathSciNet  Google Scholar 

  3. F. Amato, M. Ariola, C. Cosentino, Finite-time stabilization via dynamic output feedback. Automatica 41, 337–342 (2006)

    Article  MathSciNet  Google Scholar 

  4. F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, G. De Tommasi, Finite-time stabilization of impulsive dynamical linear systems, in Proceedings of the 47th IEEE Conference on Decision and Control (2008), pp. 2782–2787

    Google Scholar 

  5. F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, Finite-time stability of linear time-varying systems with jumps. Automatica 45, 1354–1358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37, 1459–1463 (2009)

    Article  Google Scholar 

  7. R. Ambrosino, F. Calabrese, C. Cosentino, G. De Tommasi, Sufficient conditions for finite-time stability of impulsive dynamical systems. IEEE Trans. Autom. Control 54, 861–865 (2009)

    Article  Google Scholar 

  8. S.B. Attia, S. Salhi, M. Ksouri, Static switched output feedback stabilization for linear discrete-time switched systems. Int. J. Innov. Comput. Inf. Control 8, 3203–3213 (2012)

    Google Scholar 

  9. P. Bolzern, P. Colaneri, G.D. Nicolao, Markov jump linear systems with switching transition rates: mean square stability with dwell-time. Automatica 46, 1081–1088 (2010)

    Article  MATH  Google Scholar 

  10. E.K. Boukas, Stochastic Switching Systems: Analysis and Design (Birkhauser, Berlin, 2005)

    Google Scholar 

  11. E.K. Boukas, Z.K. Liu, Robust \(\mathcal{H}_{\infty}\) control of a class of linear discrete-time Markovian jump linear systems with mode-dependent time delays. IEEE Trans. Autom. Control 46, 1918–1924 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. O.L.V. Costa, M.D. Fragoso, R.P. Marques, Discrete-Time Markovian Jump Linear Systems (Springer, London, 2005)

    Google Scholar 

  13. L. Hou, G. Zong, Y. Wu, Finite-time control for switched delay systems via dynamic output feedback. Int. J. Innov. Comput. Inf. Control 8, 4901–4913 (2012)

    Google Scholar 

  14. K. Hu, J. Yuan, Improved robust \(\mathcal{H}_{\infty}\) filtering for uncertain discrete-time switched systems. IET Control Theory Appl. 3, 315–324 (2009)

    Article  MathSciNet  Google Scholar 

  15. N.N. Krasovskii, E.A. Lidskii, Analytical design of controllers in systems with random attributes. Autom. Remote Control 22, 1021–1025 (1961)

    MathSciNet  Google Scholar 

  16. H.J. Kushner, Stochastic Stability and Control (Academic, New York, 1967)

    MATH  Google Scholar 

  17. D.J. Leith, R.N. Shorten, W.E. Leithead, O. Mason, P. Curran, Issues in the design of switched linear control systems: a benchmark study. Int. J. Adapt. Control Signal Process. 17, 103–118 (2003)

    Article  MATH  Google Scholar 

  18. D. Liberzon, A.S. Morse, Basic problems in stability and design of switched systems. IEEE Control Syst. Mag. 19, 59–70 (1999)

    Article  Google Scholar 

  19. L. Liu, J.T. Sun, Finite-time stabilization of linear systems via impulsive control. Int. J. Control 81, 905–909 (2008)

    Article  MATH  Google Scholar 

  20. Q. Liu, W. Wang, D. Wang, New results on model reduction for discrete-time switched systems with time delay. Int. J. Innov. Comput. Inf. Control 8, 3431–3440 (2012)

    Google Scholar 

  21. C. Scherer, P. Gahinet, M. Chilali, Multi-objective output-feedback control via LMI optimization. IEEE Trans. Autom. Control 42, 896–911 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. C.E. De Souza, A. Trofino, K.A. Barbosa, Mode-independent \(\mathcal{H}_{\infty}\) filters for Markovian jump linear systems. IEEE Trans. Autom. Control 51, 1837–1841 (2006)

    Article  Google Scholar 

  23. X. Su, P. Shi, L. Wu, Y.-D. Song, A novel control design on discrete-time Takagi–Sugeno fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. (2012). doi:10.1109/TFUZZ.2012.2226941

    Google Scholar 

  24. X. Su, P. Shi, L. Wu, Y.-D. Song, A novel approach to filter design for T-S fuzzy discrete-time systems with time-varying delay. IEEE Trans. Fuzzy Syst. 20, 1114–1129 (2012)

    Article  Google Scholar 

  25. J. Wu, T. Chen, L. Wang, Delay-dependent robust stability and \(\mathcal{H}_{\infty}\) control for jump linear systems with delays. Syst. Control Lett. 55, 939–948 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. H.-N. Wu, K.-Y. Cai, Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 36, 509–519 (2006)

    Article  MathSciNet  Google Scholar 

  27. L. Wu, P. Shi, H. Gao, C. Wang, \(\mathcal{H}_{\infty}\) filtering for 2D Markovian Jump systems. Automatica 44, 1858–1984 (2008)

    MathSciNet  Google Scholar 

  28. L. Wu, D.W.C. Ho, Reduced-order l 2l filtering of switched nonlinear stochastic systems. IET Control Theory Appl. 3, 493–508 (2009)

    Article  MathSciNet  Google Scholar 

  29. L. Wu, D.W.C. Ho, Sliding mode control of singular stochastic hybrid systems. Automatica 46, 779–783 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Wu, P. Shi, H. Gao, State estimation and sliding mode control of Markovian jump singular systems. IEEE Trans. Autom. Control 55, 1213–1219 (2010)

    Article  MathSciNet  Google Scholar 

  31. L. Wu, X. Su, P. Shi, J. Qiu, Model approximation for discrete-time state-delay systems in the T-S fuzzy framework. IEEE Trans. Fuzzy Syst. 19, 366–378 (2011)

    Article  Google Scholar 

  32. L. Wu, X. Su, P. Shi, Sliding mode control with bounded \(\mathcal{L}_{2}\) gain performance of Markovian jump singular time-delay systems. Automatica 48(2012), 1929–1933 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. W. Xiang, J. Xiao, \(\mathcal{H}_{\infty}\) finite-time control for switched nonlinear discrete-time systems with norm-bounded disturbance. J. Franklin Inst. 348, 331–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. W. Xiang, J. Xiao, M.N. Iqbal, Robust finite-time bounded observer design for a class of uncertain non-linear Markovian jump systems. IMA J. Math. Control Inf. 29, 551–572 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Xiang, J. Xiao, M.N. Iqbal, \(\mathcal{H}_{\infty}\) filtering for short-time switched discrete-time linear systems. Circuits Syst. Signal Process. 31, 1927–1949 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Xu, T. Chen, J. Lam, Robust \(\mathcal{H}_{\infty}\) filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans. Autom. Control 48, 900–907 (2003)

    Article  MathSciNet  Google Scholar 

  37. R. Yang, P. Shi, G.P. Liu, H. Gao, Network-based feedback control for systems with mixed delays based on quantization and dropout compensation. Automatica 47, 2805–2809 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Yang, P. Shi, G.P. Liu, Filtering for discrete-time networked nonlinear systems with mixed random delays and packet dropouts. IEEE Trans. Autom. Control 56, 2655–2660 (2011)

    Article  MathSciNet  Google Scholar 

  39. S.W. Zhao, J.T. Sun, L. Liu, Finite-time stability of linear time-varying singular systems with impulsive effects. Int. J. Control 81, 1824–1829 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Zhang, E.K. Boukas, J. Lam, Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities. IEEE Trans. Autom. Control 53, 2458–2464 (2008)

    Article  MathSciNet  Google Scholar 

  41. L. Zhang, C. Wang, L. Chen, Stability and stabilization of a class of multimode linear discrete-time systems with polytopic uncertainties. IEEE Trans. Ind. Electron. 56, 3684–3692 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 51177137 and 61134001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, W., Xiao, J. & Han, L. \(\mathcal{H}_{\infty}\) Control Synthesis for Short-Time Markovian Jump Continuous-Time Linear Systems. Circuits Syst Signal Process 32, 2799–2820 (2013). https://doi.org/10.1007/s00034-013-9594-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9594-3

Keywords

Navigation