Skip to main content
Log in

Robust Transmitted Waveform and Received Filter Design for Cognitive Radar in the Presence of Signal-Dependent Interference

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The problem of robust transmitted waveform and received filter design for cognitive radar in a signal-dependent interference environment is considered. When estimate errors of the target impulse response (TIR) and clutter impulse response (CIR) exist, in order to improve the worst signal-to-clutter ratio (SCR) and signal-to-interference-and-noise ratio (SINR), a robust transmitted waveform and received filter are designed based on the minimax criterion by using the information fed back from the receiver. Using deterministic and random models, the waveform and filter design problem is divided into three optimization problems. The robust waveform and filter are then obtained by solving these problems. In the deterministic model, we prove that the robust waveform and filter impulse response can be generated by a pseudorandom code. In the random model, the robust waveform and filter impulse response can be obtained by an alternative projection algorithm. Numerical results indicate that the worst SINR of the robust waveform and filter is higher than that of the traditional waveform and filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.K. Ahn, W.H. Kwon, H FIR filters for linear continuous-time state–space systems. IEEE Signal Process. Lett. 13(9), 557–560 (2006)

    Article  Google Scholar 

  2. C.K. Ahn, S. Han, W.H. Kwon, H finite memory controls for linear discrete-time state–space models. IEEE Trans. Circuits Syst. II, Express Briefs 54(2), 97–101 (2007)

    Article  Google Scholar 

  3. C.K. Ahn, Robustness bound for receding horizon finite memory control: Lyapunov–Krasovskii approach. Int. J. Control 85(7), 942–949 (2012)

    Article  Google Scholar 

  4. C.K. Ahn, Strictly passive FIR filtering for state-space models with external disturbance. AEÜ, Int. J. Electron. Commun. 66(11), 944–948 (2012)

    Article  Google Scholar 

  5. C.K. Ahn, P.S. Kin, Fixed-lag maximum likelihood FIR smoother for state-space models. IEICE Electron. Express 5(1), 11–16 (2008)

    Article  Google Scholar 

  6. A. Aubry, A. DeMaio, M. Piezzo et al., Cognitive design of the receive filter and transmitted phase code in reverberating environment. IET Radar Sonar Navig. 6(9), 822–833 (2012)

    Article  Google Scholar 

  7. A. Aubry, A. DeMaio, A. Farina et al., Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter. IEEE Trans. Aerosp. Electron. Syst. 49(1), 93–117 (2013)

    Article  Google Scholar 

  8. M.R. Bell, Information theory and radar waveform design. IEEE Trans. Inf. Theory 39(5), 1578–1597 (1993)

    Article  MATH  Google Scholar 

  9. C.Y. Chen, P.P. Vaidyanathan, MIMO radar waveform optimization with prior information of the extended target and clutter. IEEE Trans. Signal Process. 57(9), 3533–3544 (2009)

    Article  MathSciNet  Google Scholar 

  10. B. Dumitrescu, Bounded real lemma for FIR MIMO systems. IEEE Signal Process. Lett. 12(7), 496–499 (2005)

    Article  Google Scholar 

  11. E. Grossi, M. Lops, L. Venturino, Robust waveform design for MIMO radars. IEEE Trans. Signal Process. 59(7), 3262–3271 (2011)

    Article  MathSciNet  Google Scholar 

  12. J.R. Guerci, S.U. Pillai, Theory and application of optimum transmit-receive radar, in The Record of the IEEE 2000 International Radar Conference (2000), pp. 705–710

    Google Scholar 

  13. J.R. Guerci, Cognitive radar: the knowledge-aided fully adaptive approach, in 2010 IEEE Radar Conference (2010), pp. 1365–1370

    Chapter  Google Scholar 

  14. S. Haykin, Cognitive radar: a way of the future. IEEE Signal Process. Mag. 23(1), 30–40 (2006)

    Article  Google Scholar 

  15. B. Jiu, H. Liu, D. Feng et al., Minimax robust transmission waveform and receiving filter design for extended target detection with imprecise prior knowledge. Signal Process. 92(1), 210–218 (2012)

    Article  Google Scholar 

  16. A. Leshem, O. Naparstek, A. Nehorai, Information theoretic adaptive radar waveform design for multiple extended targets. IEEE J. Sel. Top. Signal Process. 1(1), 42–55 (2007)

    Article  Google Scholar 

  17. A.W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of Majorization and Its Applications (Academic Press, New York, 1979), pp. 338–339

    MATH  Google Scholar 

  18. S.U. Pillai, H.S. Oh, D.C. Youla et al., Optimal transmit-receiver design in the presence of signal-dependent interference and channel noise. IEEE Trans. Inf. Theory 46(2), 577–584 (2000)

    Article  MATH  Google Scholar 

  19. R.A. Romero, N.A. Goodman, Waveform design in signal-dependent interference and application to target recognition with multiple transmissions. IET Radar Sonar Navig. 3(4), 328–340 (2009)

    Article  Google Scholar 

  20. P. Stoica, J. Li, M. Xue, Transmit codes and receive filters for radar. IEEE Signal Process. Mag. 25(6), 94–109 (2008)

    Article  Google Scholar 

  21. P. Stoica, H. He, J. Li, Optimization of the receive filter and transmit sequence for active sensing. IEEE Trans. Signal Process. 60(4), 1730–1740 (2012)

    Article  MathSciNet  Google Scholar 

  22. P. Stoica, J. Li, Y. Xie, On probing signal design for MIMO radar. IEEE Trans. Signal Process. 55(8), 4151–4161 (2007)

    Article  MathSciNet  Google Scholar 

  23. T.J. Su, H.W. Peng, Robust finite impulse response equalisation for time-delay communication channels: linear matrix inequality approach. IET Control Theory Appl. 1(1), 226–232 (2007)

    Article  MathSciNet  Google Scholar 

  24. B. Tang, J. Tang, Y.N. Peng, MIMO radar waveform design in colored noise based on information theory. IEEE Trans. Signal Process. 58(9), 4684–4697 (2010)

    Article  MathSciNet  Google Scholar 

  25. S.J. Wang, M.X. Wu, Z.Z. Jia, Matrix Inequalities, 2nd edn. (Science Press, Beijing, 2006), pp. 127–129

    Google Scholar 

  26. Y. Yang, R.S. Blum, MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Trans. Aerosp. Electron. Syst. 43(1), 330–343 (2007)

    Article  Google Scholar 

  27. Y. Yang, R.S. Blum, Minimax robust MIMO radar waveform design. IEEE J. Sel. Top. Signal Process. 1(1), 147–155 (2007)

    Article  Google Scholar 

  28. H. Zhang, Y. Shi, A. Saadat Mehr, On H filtering for discrete-time Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 20(2), 396–401 (2012)

    Article  MathSciNet  Google Scholar 

  29. H. Zhang, Y. Shi, A. Saadat Mehr, Robust weighted \(\mathcal{H}_{\infty}\) filtering for networked systems with intermitted measurements of multiple sensors. Int. J. Adapt. Control Signal Process. 25(4), 313–330 (2011)

    Article  MATH  Google Scholar 

  30. H. Zhang, Y. Shi, A. Saadat Mehr, Robust energy-to-peak filtering for networked systems with time-varying delays and randomly missing data. IET Control Theory Appl. 4(12), 2921–2936 (2010)

    Article  MathSciNet  Google Scholar 

  31. H. Zhang, Y. Shi, A. Saadat Mehr, Robust energy-to-peak FIR equalization for time-varying communication channels with intermittent observations. Signal Process. 91(7), 1651–1658 (2011)

    Article  MATH  Google Scholar 

  32. H. Zhang, A. Saadat Mehr, Y. Shi, Improved robust energy-to-peak filtering for uncertain linear systems. Signal Process. 90(9), 2667–2675 (2010)

    Article  MATH  Google Scholar 

  33. H. Zhang, A. Saadat Mehr, Y. Shi, Robust non-fragile dynamic vibration absorbers with uncertain factors. J. Sound Vib. 330(4), 559–566 (2011)

    Article  Google Scholar 

  34. H. Zhang, Y. Shi, A. Saadat Mehr, Robust equalisation for inter symbol interference communication channels. IET Signal Process. 6(2), 73–78 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Cui, C. Robust Transmitted Waveform and Received Filter Design for Cognitive Radar in the Presence of Signal-Dependent Interference. Circuits Syst Signal Process 32, 3013–3029 (2013). https://doi.org/10.1007/s00034-013-9611-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9611-6

Keywords

Navigation