Skip to main content
Log in

Target Detection for Heterogeneous Cyclostationary Sea Clutter

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper mainly deals with the problem of target detection under the heterogeneous background of cyclostationary sea clutter. Conventional approaches generally assume the ideal condition requiring the secondary data to be homogeneous with the primary data in order to exactly estimate the clutter covariance matrix and implement the adaptive filters. To the contrary, the realistic clutter environments appear heterogeneous, leading to the performance degradation of these traditional processors. For the sake of alleviating the effect of the heterogeneity, the non-homogeneous detectors, especially with knowledge-aided (KA) method based on the prior knowledge, are presented under the heterogeneous Gaussian condition. However, the experimental data manifest that the compound-Gaussian distribution is successfully applied in modeling the heterogeneous sea clutter, which also presents the cyclostationarity. Accordingly, when lacking prior information as used in the KA method, a new non-homogeneous detector based on mean value (M-NHD) is proposed against the heterogeneous sea clutter with cyclostationarity by operating solely on the primary data, in terms of the generalized likelihood ratio test (GLRT) criterion. The expressions of the probabilities of detection and false alarm are subsequently given. Since the detection performance depends on the steering vector, an adaptive non-homogeneous detector based on the steering vector (SV-NHD) is proposed subject to the design method for the optimal steering vector. Finally, the numerical results evaluate the performance of the two proposed detectors with Monte Carlo method under heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd edn. (Wiley, Hoboken, 2003)

    MATH  Google Scholar 

  2. O. Besson, Detection of a signal in linear subspace with bounded mismatch. IEEE Trans. Aerosp. Electron. Syst. 42(3), 1131–1139 (2006)

    Article  MathSciNet  Google Scholar 

  3. S. Bidon, O. Besson, J.-Y. Tourneret, A Bayesian approach to adaptive detection in nonhomogeneous environments. IEEE Trans. Signal Process. 56(1), 205–217 (2008)

    Article  MathSciNet  Google Scholar 

  4. S. Bidon, O. Besson, J.-Y. Tourneret, The adaptive coherence estimator is the generalized likelihood ratio test for a class of heterogeneous environments. IEEE Signal Process. Lett. 15, 281–284 (2008)

    Article  Google Scholar 

  5. S. Bidon, O. Besson, J.-Y. Tourneret, Knowledge-aided STAP in heterogeneous clutter using a hierarchical Bayesian algorithm. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1863–1879 (2011)

    Article  Google Scholar 

  6. J. Carretero-Moya, J. Gismero-Menoyo, A. Asensio-López, Á. Blanco-del-Campo, Application of the Radon transform to detect small-targets in sea clutter. IET Radar Sonar Navig. 3(2), 155–166 (2009)

    Article  Google Scholar 

  7. P.Y. Chen, W.L. Melvin, M.C. Wicks, Screening among multivariate normal data. J. Multivar. Anal. 69, 10–29 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Conte, A. De Maio, Mitigation techniques for non-Gaussian sea clutter. IEEE J. Ocean. Eng. 29(2), 284–302 (2004)

    Article  Google Scholar 

  9. E. Conte, M. Longo, Characterization of radar clutter as a spherically invariant random process. IEE Proc. F Commun. Radar Signal Process. 134(2), 191–197 (1987)

    Article  Google Scholar 

  10. E. Conte, A. De Maio, C. Galdi, Statistical analysis of real clutter at different range resolutions. IEEE Trans. Aerosp. Electron. Syst. 40(3), 903–918 (2004)

    Article  Google Scholar 

  11. G.L. Cui, L.J. Kong, J.Y. Yang, Performance analysis of colocated MIMO radars with randomly distributed arrays in compound-Gaussian clutter. Circuits Syst. Signal Process. 31(4), 1407–1422 (2012)

    Article  MathSciNet  Google Scholar 

  12. G.L. Cui, L.J. Kong, X.B. Yang, J.Y. Yang, The Rao and Wald tests designed for distributed targets with polarization MIMO radar in compound-Gaussian clutter. Circuits Syst. Signal Process. 31(1), 237–254 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Gini, M.V. Greco, Suboptimum approach to adaptive coherent radar detection in compound-Gaussian clutter. IEEE Trans. Aerosp. Electron. Syst. 35(3), 1095–1104 (1999)

    Article  Google Scholar 

  14. F. Gini, M. Greco, Texture modeling and validation using measured sea clutter data, in IEEE Radar Conference (2001), pp. 387–392

    Google Scholar 

  15. F. Gini, M. Greco, Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter. Signal Process. 82(12), 1847–1859 (2002)

    Article  Google Scholar 

  16. F. Gini, A. Farina, M. Greco, Selected list of references on radar signal processing. IEEE Trans. Aerosp. Electron. Syst. 37(1), 329–359 (2001)

    Article  Google Scholar 

  17. F. Gini, G.B. Giannakis, M. Greco, G.T. Zhou, Time-averaged subspace methods for radar clutter texture retrieval. IEEE Trans. Signal Process. 49(9), 1886–1898 (2001)

    Article  Google Scholar 

  18. D.A. Harville, Matrix Algebra from a Statistician’s Perspective (Springer, New York, 2008)

    MATH  Google Scholar 

  19. S. Haykin, D.J. Thomson, Signal detection in a nonstationary environment reformulated as an adaptive pattern classification problem. Proc. IEEE 86(11), 2325–2344 (1998)

    Article  Google Scholar 

  20. M. Hurtado, A. Nehorai, Polarization diversity for detecting targets in heavy inhomogeneous clutter, in IEEE International Symposium on Electromagnetic Compatibility (2007), pp. 1–7

    Google Scholar 

  21. S.M. Kay, Fundamentals of Statistical Signal Processing Volume 2: Detection Theory (Prentice Hall, New Jersey, 1998)

    Google Scholar 

  22. S. Kraut, L.L. Scharf, The CFAR adaptive subspace detector is a scale-invariant GLRT. IEEE Trans. Signal Process. 47(9), 2538–2541 (1999)

    Article  Google Scholar 

  23. M. McDonald, S. Lycett, Fast versus slow scan radar operation for coherent small target detection in sea clutter. IEE Proc. Radar Sonar Navig. 152(6), 429–435 (2005)

    Article  Google Scholar 

  24. W.L. Melvin, Space-time adaptive radar performance in heterogeneous clutter. IEEE Trans. Aerosp. Electron. Syst. 36(2), 621–633 (2000)

    Article  MathSciNet  Google Scholar 

  25. W.L. Melvin, M.C. Wicks, Improving practical space-time adaptive radar, in IEEE National Radar Conference (1997), pp. 48–53

    Google Scholar 

  26. M. Rangaswamy, J.H. Michels, B. Himed, Statistical analysis of the non-homogeneity detector for STAP applications. Digit. Signal Process. 44(3), 253–264 (2004)

    Article  Google Scholar 

  27. L.P. Roy, R.V.R. Kumar, Accurate K-distributed clutter model for scanning radar application. IET Radar Sonar Navig. 4(2), 158–169 (2010)

    Article  Google Scholar 

  28. J.M. Schott, Matrix Analysis for Statistics (Wiley, Hoboken, 2005)

    MATH  Google Scholar 

  29. P. Stoica, A. Nehorai, On the concentrated stochastic likelihood function in array signal processing. Circuits Syst. Signal Process. 14(5), 667–674 (1995)

    Article  Google Scholar 

  30. P. Swerling, Radar probability of detection for some additional fluctuating target cases. IEEE Trans. Aerosp. Electron. Syst. 33(2), 698–709 (1999)

    Article  Google Scholar 

  31. D. Walker, Doppler modelling of radar sea clutter. IEE Proc. Radar Sonar Navig. 148(2), 73–80 (2001)

    Article  Google Scholar 

  32. Y.L. Wang, J.W. Chen, Z. Bao, Y.N. Peng, Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments. IEEE Trans. Aerosp. Electron. Syst. 39(1), 70–81 (2003)

    Article  Google Scholar 

  33. P. Wang, H.B. Li, B. Himed, Parametric Rao tests for multichannel adaptive detection in partially homogeneous environment. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1850–1862 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The work is sponsored by the Fundamental Research Funds for the Central Universities (ZYGX2012Z001 and ZYGX2012YB008), National Natural Science Foundation of China (61201276), Program for New Century Excellent Talents in University (A1098524023901001063), and Sichuan Youth Science and Technology Foundation (2011JQ0024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sijia Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Kong, L. & Yang, J. Target Detection for Heterogeneous Cyclostationary Sea Clutter. Circuits Syst Signal Process 33, 959–971 (2014). https://doi.org/10.1007/s00034-013-9663-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9663-7

Keywords

Navigation