Skip to main content
Log in

Global Stability of Fuzzy Cellular Neural Networks with Mixed Delays and Leakage Delay Under Impulsive Perturbations

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the global asymptotic stability of a kind of fuzzy cellular neural networks with mixed delays under impulsive perturbations. The mixed delays include constant delay in the leakage term (i.e., “leakage delay”), time-varying delays, and continuously distributed delays. By using the quadratic convex combination method, reciprocal convex approach, Jensen integral inequality, and linear convex combination technique, several novel sufficient conditions are derived to ensure the global asymptotic stability of the equilibrium point of the considered networks. The proposed results, which do not require the differentiability and monotonicity of the activation functions, can be easily checked via Matlab software. Finally, two numerical examples are given to demonstrate the effectiveness and less conservativeness of our theoretical results over existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Dong, H. Zhang, Y. Wang, Dynamics analysis of impulsive stochastic Cohen–Grossberg neural networks with Markovian jumping and mixed time delays. Neurocomputing 72, 1999–2004 (2009)

    Article  Google Scholar 

  2. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer Academic, Dordrecht, 1992)

    Book  MATH  Google Scholar 

  3. K. Gopalsamy, Leakage delays in BAM. J. Math. Anal. Appl. 325, 1117–1132 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhauser, Boston, 2003)

    Book  MATH  Google Scholar 

  5. W. Han, Y. Liu, L. Wang, Global exponential stability of delayed fuzzy cellular neural networks with Markovian jumping parameters. Neural Comput. Appl. 21, 67–72 (2012)

    Article  Google Scholar 

  6. X. Li, X. Fu, P. Balasubramaniamc, R. Rakkiyappan, Existence, uniqueness and stability analysis of recurrent neural networks with time delay in the leakage term under impulsive perturbations. Nonlinear Anal., Real World Appl. 11, 4092–4108 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. X. Li, R. Rakkiyappan, P. Balasubramaniam, Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations. J. Franklin Inst. 348, 135–155 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Z. Liu, H. Zhang, Z. Wang, Novel stability criterions of a new fuzzy cellular neural networks with time-varying delays. Neurocomputing 72, 1056–1064 (2009)

    Article  Google Scholar 

  9. Z. Liu, H. Zhang, Q. Zhang, Novel stability analysis for recurrent neural networks with multiple delays via line integral-type L–K functional. IEEE Trans. Neural Netw. 21, 1710–1718 (2010)

    Article  Google Scholar 

  10. S. Long, Q. Song, X. Wang, D. Li, Stability analysis of fuzzy cellular neural networks with time delay in the leakage term and impulsive perturbations. J. Franklin Inst. 349, 2461–2479 (2012)

    Article  MathSciNet  Google Scholar 

  11. P. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235–238 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. A.S. Poznyak, E.N. Sanchez, Nonlinear systems approximation by neural networks: error stability analysis. Intell. Autom. Soft Comput. 1, 247–258 (1995)

    Article  Google Scholar 

  13. Y. Shen, J. Wang, Noise-induced stabilization of the recurrent neural networks with mixed time-varying delays and Markovian-switching parameters. IEEE Trans. Neural Netw. 18, 1857–1862 (2007)

    Article  Google Scholar 

  14. Y. Shen, J. Wang, Almost sure exponential stability of recurrent neural networks with Markovian switching. IEEE Trans. Neural Netw. 20, 840–855 (2009)

    Article  Google Scholar 

  15. Y. Shen, J. Wang, Robustness analysis of global exponential stability of recurrent neural networks in the presence of time delays and random disturbances. IEEE Trans. Neural Netw. Learn. Syst. 24, 87–96 (2013)

    Article  MathSciNet  Google Scholar 

  16. Q. Song, J. Cao, Passivity of uncertain neural networks with both leakage delay and time-varying delay. Nonlinear Dyn. 67, 1695–1707 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Q. Song, Z. Wang, New results on passivity analysis of uncertain neural networks with time-varying delays. Int. J. Comput. Math. 87, 668–678 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Q. Song, J. Liang, Z. Wang, Passivity analysis of discrete-time stochastic neural networks with time-varying delays. Neurocomputing 72, 1782–1788 (2012)

    Article  Google Scholar 

  19. Q. Song, Z. Wang, J. Liang, Analysis on passivity and passification of T–S fuzzy systems with time-varying delays. J. Intell. Fuzzy Syst. 24, 21–30 (2013)

    MathSciNet  Google Scholar 

  20. Z. Wang, H. Zhang, P. Li, An LMI approach to stability analysis of reaction–diffusion Cohen–Grossberg neural networks concerning Dirichlet boundary conditions and distributed delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40, 1596–1606 (2010)

    Article  Google Scholar 

  21. Z. Wang, H. Zhang, B. Jiang, LMI-based approach for global asymptotic stability analysis of recurrent neural networks with various delays and structures. IEEE Trans. Neural Netw. 22, 1032–1045 (2011)

    Article  Google Scholar 

  22. Z.-G. Wu, P. Shi, H. Su, J. Chu, Exponential synchronization of neural networks with discrete and distributed delays under time-varying sampling. IEEE Trans. Neural Netw. Learn. Syst. 23, 1368–1376 (2012)

    Article  Google Scholar 

  23. T. Yang, L.-B. Yang, The global stability of fuzzy cellular neural networks. IEEE Trans. Circuits Syst. 43, 880–883 (1996)

    Article  Google Scholar 

  24. T. Yang, L.-B. Yang, Fuzzy cellular neural network: a new paradigm for image processing. Int. J. Circuit Theory Appl. 25, 469–481 (1997)

    Article  Google Scholar 

  25. H. Zhang, Y. Quan, Modeling identification and control of a class of nonlinear system. IEEE Trans. Fuzzy Syst. 9, 349–354 (2001)

    Article  Google Scholar 

  26. H. Zhang, Y. Wang, Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 19, 366–370 (2008)

    Article  Google Scholar 

  27. H. Zhang, S. Lun, D. Liu, Fuzzy H filter design for a class of nonlinear discrete-time systems with multiple time delay’s. IEEE Trans. Fuzzy Syst. 15, 453–469 (2007)

    Article  Google Scholar 

  28. H. Zhang, Z. Wang, D. Liu, Global asymptotic stability of recurrent neural networks with multiple time-varying delays. IEEE Trans. Neural Netw. 19, 855–873 (2008)

    Article  Google Scholar 

  29. Y. Zhang, D. Yue, E. Tian, New stability criteria of neural networks with interval time-varying delay: a piecewise delay method. Appl. Math. Comput. 208, 249–259 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Zhang, Z. Liu, G.B. Huang, Z. Wang, Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay. IEEE Trans. Neural Netw. 21, 91–106 (2010)

    Article  Google Scholar 

  31. H. Zhang, T. Ma, G.B. Huang, Z. Wang, Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40, 831–844 (2010)

    Article  Google Scholar 

  32. H. Zhang, F. Yang, X. Liu, Q. Zhang, Stability analysis for neural networks with time-varying delay based on quadratic convex combination. IEEE Trans. Neural Netw. Learn. Syst. 24, 513–521 (2013)

    Article  Google Scholar 

  33. Q. Zhu, J. Cao, Robust exponential stability of Markovian jump impulsive stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 21, 1314–1325 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China 61034005, 61074073, 61273022, Program for New Century Excellent Talents in University of China (NCET-10-0306), and the Fundamental Research Funds for the Central Universities under Grants N110504001 and N100104102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-De Zheng.

Appendix:  Proof of Theorem 1

Appendix:  Proof of Theorem 1

Consider the following Lyapunov–Krasovskii functional candidate:

$$ V\bigl(t,y(t)\bigr)=\sum^5_{i=1}V_{i} \bigl(t,y(t)\bigr), $$
(15)

where

$$\begin{aligned} V_{1}\bigl(t,y(t)\bigr)&= \biggl[ y(t)-D\int_{t-\sigma}^t y(s)\,\mathrm{d}s \biggr]^T{P} \biggl[ y(t)-D\int_{t-\sigma}^t y(s)\,\mathrm{d}s \biggr], \\ V_{2}\bigl(t,y(t)\bigr)& = \int_{t-{\tau_1}}^t {y}(s)^T{Q_1}y(s)\,\mathrm{d}s +\int_{t-{\tau_2}}^t {y}(s)^T{Q_2}y(s)\,\mathrm{d}s \\ &\quad +\int_{t-\tau(t)}^t {y}(s)^T{Q_3}y(s)\, \mathrm{d}s +\int_{t-\tau(t)}^t {g}\bigl(y(s) \bigr)^T{Q_4}g\bigl(y(s)\bigr)\,\mathrm{d}s, \\ V_{3}\bigl(t,y(t)\bigr)&={\tau_2}\int _{-{\tau_2}}^0 \int_{t+ \theta}^t \bigl({y}(s)^T{Q_5}y(s)+\dot{y}(s)^T{Q_6} \dot{y}(s) \bigr)\,\mathrm{d}s\,\mathrm{d}\theta \\ &\quad +({\tau_2}-{\tau_1})\int_{-{\tau_2}}^{-\tau_1} \int_{t+\theta}^t \bigl({y}(s)^T{Q_7}y(s)+ \dot{y}(s)^T{Q_8}\dot{y}(s) \bigr)\,\mathrm{d}s\,\mathrm{d} \theta, \\ V_{4}\bigl(t,y(t)\bigr)&=\int_{t - \tau_2 }^t {\int_\theta^t {\int_\beta^t {\dot{y}{{(s)}^T} {Q_9}\dot{y}(s)\,\mathrm{d}s\,\mathrm{d} \beta\,\mathrm{d}\theta}}} \\ &\quad +\int_{t-{\tau_2}}^{t-\tau_1}{\int_\theta^t {\int_\beta^t {\dot{y}{{(s)}^T}Q_{10} \dot{y}(s)\,\mathrm{d}s\,\mathrm{d}\beta\,\mathrm{d}\theta}}} \\ &\quad +\sigma\int_{-\sigma}^0 \int_{t+\theta}^t \bigl({y}(s)^T{Q_{11}}y(s)+\dot{y}^TQ_{12} \dot{y}(s) \bigr)\,\mathrm{d}s\,\mathrm{d}\theta\\ &\quad + \int_{t-\sigma}^t {y}(s)^T{Q_{13}}y(s)\,\mathrm{d}s, \\ V_{5}\bigl(t,y(t)\bigr)&=\sum_{j=1}^n r_{1j}\int_0^\infty{k_j}( \theta)\int_{t-\theta}^t g_j^2 \bigl({y_j}(s)\bigr)\,\mathrm{d}s\,\mathrm{d}\theta \end{aligned}$$

with \(P=\operatorname{diag}\{p_{1}, p_{2}, \ldots, p_{n} \}\).

Calculating the upper right derivative of V(t,y(t)) along the solution of (2) at the continuous interval t∈[t k−1,t k ),kZ +, we get that

$$ D^+V\bigl(t,y(t)\bigr)=\sum^5_{i=1}D^+V_{i} \bigl(t,y(t)\bigr), $$
(16)

where

$$\begin{aligned} D^+V_{1}\bigl(t,y(t)\bigr) &= 2\sum ^n_{i=1}p_{i} \biggl({y_i}(t)-d_i \int_{t-\sigma }^t {y_i}(s)\,\mathrm{d}s \biggr)\frac{\mathrm{d}}{\mathrm{d}t} \biggl[{y_i}(t)-d_i\int _{t-\sigma}^t {y_i}(s)\,\mathrm{d}s \biggr], \end{aligned}$$
(17)
$$\begin{aligned} D^+V_{2}\bigl(t,y(t)\bigr) &= \sum^3_{i=1}{y}(t)^T{Q_i}y(t)-{y}(t-{ \tau_1})^T{Q_1}y(t-{\tau_1}) \\ &\quad -{y}(t-{\tau_2})^T{Q_2}y(t- { \tau_2})-\bigl(1-\dot{\tau} (t)\bigr)y\bigl(t-\tau(t) \bigr)^T \\ &\quad \times {Q_3}y\bigl(t-\tau(t)\bigr) \\ &\quad + {g}\bigl(y(t)\bigr)^T{Q_4}g\bigl(y(t)\bigr)-\bigl(1- \dot{\tau} (t)\bigr){g}\bigl(y\bigl(t-\tau(t)\bigr)\bigr)^T \\ &\quad \times {Q_4}g \bigl(y\bigl(t-\tau(t)\bigr)\bigr), \end{aligned}$$
(18)
$$\begin{aligned} D^+V_{3}\bigl(t,y(t)\bigr)& = \tau_2^2 \bigl(y(t)^T{Q_5}y(t)+{\dot{y}}(t)^T{Q_6} \dot{y}(t) \bigr) \\ &\quad -{\tau_2}\int_{t-{\tau_2}}^t \bigl({y(s)^T{Q_5}y(s)}+ {{\dot{y}}(s)^T{Q_6} \dot{y}(s)} \bigr) \,\mathrm{d}s \\ &\quad + {({\tau_2}-{\tau_1})^2} \bigl({y}(t)^T{Q_7}y(t)+{\dot{y}}(t)^T{Q_8} \dot{y}(t) \bigr) \\ &\quad -({\tau_2}-{\tau_1})\int_{t-{\tau_2}}^{t-{\tau_1}} \bigl({{y}(s)^T{Q_7}y(s)}+ {{\dot{y}}(s)^T{Q_8} \dot{y}(s)} \bigr)\,\mathrm{d}s, \end{aligned}$$
(19)
$$\begin{aligned} {D^+ V_4}\bigl(t,y(t)\bigr) &= \frac{1}{2}{\tau_2 ^2}\dot{y}{(t)^T} {Q_9}\dot{y}(t) - \int _{t - \tau_2 }^t {\int_\theta^t {\dot{y}{{(s)}^T} {Q_9}\dot{y}(s)} } \,\mathrm{d}s\,\mathrm{d} \theta \\ &\quad + \frac{1}{2}{({\tau_2}-{\tau_1})^2} \dot{y}{(t)^T}Q_{10}\dot{y}(t)- \int_{t - \tau_2 }^{t-{\tau_1}} {\int_\theta^t {\dot{y}{{(s)}^T}Q_{10} \dot{y}(s)} } \,\mathrm{d}s\,\mathrm{d}\theta \\ &\quad + {\sigma^2} \bigl({y}(t)^T{Q_{11}}y(t)+ \dot{y}(t)^TQ_{12}\dot{y}(t) \bigr) \\ &\quad +{y}(t)^TQ_{13}y(t)-{y}(t- \sigma)^TQ_{13}y(t-\sigma) \\ &\quad -\sigma\int_{t-\sigma}^t \bigl({{y}(s)^T{Q_{11}}y(s)}+{ \dot{y}(s)^TQ_{12}\dot{y}(s)} \bigr) \,\mathrm{d}s, \end{aligned}$$
(20)
$$\begin{aligned} D^+V_{5}\bigl(t,y(t)\bigr)&=\sum_{j=1}^n {r_{1j}\int_0^\infty {{k_j}(\theta)g_j^2\bigl({y_j}(t )\bigr)} } \,\mathrm{d}\theta \\ &\quad -\sum_{j= 1}^n {r_{1j}\int_0^\infty {{k_j}(\theta)g_j^2\bigl({y_j}(t- \theta)\bigr)} } \,\mathrm{d}\theta. \end{aligned}$$
(21)

Using (5) gives

$$\begin{aligned} D^+V_{1}\bigl(t,y(t)\bigr) &= 2\sum^n_{i=1}p_{i} \biggl({y_i}(t)-d_i\int_{t-\sigma }^t {y_i}(s)\mathrm{d}s \biggr) \Biggl\{-{d_i} {y_i}(t)+\sum_{j=1}^n {{a_{ij}} {g_j}\bigl({y_j}(t)\bigr)} \\ &\quad +\sum_{j=1}^n {{b_{ij}} {g_j}\bigl({y_j}\bigl(t-\tau(t)\bigr)\bigr)} \\ &\quad +\bigwedge _{j=1}^n {\alpha_{ij}}\int _{-\infty}^t \, \mathrm{d}s \\ &\quad -\bigwedge_{j=1}^n {\alpha_{ij}} \int_{-\infty}^t {{k_j}(t-s){f_j} \bigl(x_j^*\bigr)} \,\mathrm{d}s \\ &\quad -\bigvee_{j=1}^n {\beta_{ij}}\int_{-\infty}^t {{k_j}(t-s){f_j}\bigl(x_j^*\bigr)\, \mathrm{d}s} \\ &\quad +\bigvee_{j=1}^n {\beta_{ij}} \int_{-\infty}^t {{k_j}(t-s){f_j} \bigl({y_j}(s)+x_j^*\bigr)\,\mathrm{d}s} \Biggr\}. \end{aligned}$$
(22)

Based on Lemma 3, we obtain the following inequalities:

$$\begin{aligned} &\Biggl| \bigwedge_{j=1}^n \alpha_{ij} \int_{-\infty}^t {k_j}(t-s){f_j} \bigl({y_j}(s)+x_j^*\bigr) \mathrm{d}s-\bigwedge _{j=1}^n \alpha_{ij}\int _{-\infty}^t {k_j}(t-s){f_j} \bigl(x_j^*\bigr)\, \mathrm{d}s \Biggr| \\ &\quad \le\sum_{j=1}^n | \alpha_{ij} |\times\biggl|\int_{-\infty }^t {k_j}(t- s){f_j}\bigl({y_j}(s)+x_j^* \bigr) \,\mathrm{d}s-\int_{-\infty}^t {k_j}(t-s){f_j}\bigl(x_j^*\bigr)\, \mathrm{d}s \biggr| \\ &\quad =\sum_{j=1}^n | \alpha_{ij} |\times\biggl|\int_{-\infty}^t {k_j}(t- s){g_j}\bigl({y_j}(s)\bigr)\, \mathrm{d}s\biggr|, \\ &\Biggl| \bigvee_{j=1}^n \beta_{ij} \int_{-\infty}^t {k_j}(t-s){f_j} \bigl({y_j}(s)+x_j^*\bigr)\, \mathrm{d}s-\bigvee _{j=1}^n \beta_{ij}\int _{-\infty}^t {k_j}(t-s){f_j} \bigl(x_j^*\bigr) \,\mathrm{d}s \Biggr| \\ &\quad \le\sum_{j=1}^n | \beta_{ij} |\times\biggl|\int_{-\infty }^t {k_j}(t- s){f_j}\bigl({y_j}(s)+x_j^* \bigr)\, \mathrm{d}s-\int_{-\infty}^t {k_j}(t-s){f_j}\bigl(x_j^*\bigr)\, \mathrm{d}s \biggr| \\ &\quad =\sum_{j=1}^n | \beta_{ij} |\times\biggl|\int_{-\infty}^t {k_j}(t- s){g_j}\bigl({y_j}(s)\bigr)\, \mathrm{d}s\biggr|. \end{aligned}$$

By applying Lemmas 1 and 4 we get the following inequalities for any positive diagonal matrices R 2,R 4:

$$\begin{aligned} &2\sum^n_{i=1}p_{im}y_i(t) \Biggl( \bigwedge_{j=1}^n \alpha_{ij} \int_{-\infty}^t {k_j}(t-s){f_j} \bigl({y_j}(s)+x_j^*\bigr) \mathrm{d}s \\ &\qquad -\bigwedge _{j=1}^n \alpha_{ij}\int _{-\infty}^t {k_j}(t-s){f_j} \bigl(x_j^*\bigr)\, \mathrm{d}s \\ & \qquad + \bigvee _{j=1}^n \beta_{ij}\int _{-\infty}^t {k_j}(t-s){f_j} \bigl({y_j}(s)+x_j^*\bigr) \,\mathrm{d}s-\bigvee _{j=1}^n \beta_{ij}\int _{-\infty}^t {k_j}(t-s){f_j} \bigl(x_j^*\bigr)\, \mathrm{d}s \Biggr) \\ &\quad \le2\sum^n_{i=1}p_{im}\bigl|{y_i}(t)\bigr| \Biggl( \Biggl| \bigwedge_{j=1}^n \alpha _{ij}\int_{-\infty}^t {k_j}(t-s){f_j} \bigl({y_j}(s)+x_j^*\bigr) \,\mathrm{d}s \\ &\qquad -\bigwedge_{j=1}^n \alpha_{ij} \int_{-\infty}^t {k_j}(t-s){f_j} \bigl(x_j^*\bigr) \,\mathrm{d}s \Biggr| + \Biggl|\bigvee_{j=1}^n \beta_{ij}\int_{-\infty}^t {k_j}(t-s){f_j}\bigl({y_j}(s)+x_j^* \bigr)\, \mathrm{d}s \\ &\qquad -\bigvee_{j=1}^n \beta_{ij}\int_{-\infty}^t {k_j}(t-s){f_j}\bigl(x_j^*\bigr) \,\mathrm{d}s\Biggr | \Biggr) \\ &\quad \le2\bigl|y(t)\bigr|^TP_m \bigl(|\alpha|+| \beta|\bigr) \biggl|\int_{-\infty}^t {k}(t- s){g}\bigl({y}(s)\bigr) \,\mathrm{d}s\biggr| \\ &\quad \le\bigl|y(t)\bigr|^TP_m \bigl(|\alpha|+| \beta|\bigr)R_2^{-1} \bigl(|\alpha|+ |\beta|\bigr)P_m\bigl|y(t)\bigr| \\ &\qquad +\biggl|\int_{-\infty}^t {k}(t- s){g} \bigl({y}(s)\bigr) \,\mathrm{d}s\biggr|^T R_2\biggl |\int_{-\infty}^t {k}(t- s){g}\bigl({y}(s)\bigr) \,\mathrm{d}s\biggr| \\ &\quad \le ny(t)^TP_m\varUpsilon R_2^{-1} \varUpsilon P_my(t)+ \zeta(t)^T\varpi_7^TR_2 \varpi_7\zeta(t), \end{aligned}$$
(23)
$$\begin{aligned} &{-}2\sum^n_{i=1}p_{im}d_i \int_{t-\sigma}^t {y_i}(s)\,\mathrm{d}s \Biggl( \bigwedge_{j=1}^n \alpha_{ij}\int _{-\infty}^t {k_j}(t-s){f_j} \bigl({y_j}(s)+x_j^*\bigr)\, \mathrm{d}s \\ &\qquad -\bigwedge _{j=1}^n \alpha_{ij}\int _{-\infty}^t {k_j}(t-s){f_j} \bigl(x_j^*\bigr)\, \mathrm{d}s + \bigvee _{j=1}^n \beta_{ij}\int _{-\infty}^t {k_j}(t-s){f_j} \bigl({y_j}(s)+x_j^*\bigr)\, \mathrm{d}s \\ &\qquad -\bigvee _{j=1}^n \beta_{ij}\int _{-\infty}^t {k_j}(t-s){f_j} \bigl(x_j^*\bigr)\, \mathrm{d}s \Biggr) \\ &\quad \le n \biggl(\int_{t-\sigma}^t {y}(s) \mathrm{d}s \biggr)^TP_mD\varUpsilon R_4^{-1} \varUpsilon DP_m\int_{t-\sigma}^t {y}(s) \mathrm{d}s+ \zeta(t)^T\varpi_7^TR_4 \varpi_7\zeta(t). \end{aligned}$$
(24)

When 0<τ(t)<τ 2, according to Lemma 2, we derive

$$\begin{aligned} &{-}{\tau_2}\int_{t-{\tau_2}}^t {y(s)^T{Q_5}y(s)}\,\mathrm{d}s \\ &\quad =-{\tau_2}\int_{t-\tau(t)}^t {y(s)^T{Q_5}y(s)}\,\mathrm{d}s-{\tau_2}\int _{t-{\tau_2}}^{t-\tau(t)} {y(s)^T{Q_5}y(s)}\, \mathrm{d}s \\ &\quad \leq\xi(t)^T \biggl[-\frac{\tau_2}{\tau(t)}\varpi_9^T{Q_5} \varpi_9 -\frac{\tau_2}{\tau_2-\tau(t)}\varpi_{11}^T{Q_5} \varpi_{11} \biggr]\xi(t) \\ &\quad =\xi(t)^T \biggl[-\varpi_9^T{Q_5} \varpi_9-\frac{{\tau_2}-\tau(t)}{\tau (t)}\varpi_9^T{Q_5} \varpi_9 \\ &\qquad -\varpi_{11}^T{Q_5} \varpi_{11}-\frac{\tau(t)}{\tau_2-\tau(t)}\varpi_{11}^T{Q_5} \varpi_{11} \biggr]\xi(t). \end{aligned}$$
(25)

Based on the reciprocal convex technique of [11, 22], from (7) we have

$$\xi(t)^T \begin{bmatrix} \sqrt{\frac{{\tau_2}-\tau(t)}{\tau(t)}}\varpi_9\\ -\sqrt{\frac{\tau(t)}{{\tau_2}-\tau(t)}}\varpi_{11} \end{bmatrix} ^T \begin{bmatrix} Q_5& X_9\\ *& Q_5 \end{bmatrix} \begin{bmatrix} \sqrt{\frac{{\tau_2}-\tau(t)}{\tau(t)}}\varpi_9\\ -\sqrt{\frac{\tau(t)}{{\tau_2}-\tau(t)}}\varpi_{11} \end{bmatrix} \xi(t)\ge0, $$

which implies

$$\begin{aligned} &\xi(t)^T \biggl[\frac{{\tau_2}-\tau(t)}{\tau(t)}\varpi_9^T{Q_5} \varpi_9 +\frac{\tau(t)}{\tau_2-\tau(t)}\varpi_{11}^T{Q_5} \varpi_{11} \biggr]\xi(t) \\ &\quad \geq\xi(t)^T \bigl(\varpi_9^TX_9 \varpi_{11}+\varpi_{11}^TX_9^T \varpi_9 \bigr)\xi(t). \end{aligned}$$
(26)

Then, we can get from (25) and (26) that

$$\begin{aligned} &{-}{\tau_2}\int_{t-{\tau_2}}^t {y(s)^T{Q_5}y(s)}\,\mathrm{d}s \\ &\quad \leq\xi(t)^T \bigl(-\varpi_9^T{Q_5} \varpi_9-\varpi_{11}^T{Q_5}\varpi _{11}-\varpi_9^TX_9 \varpi_{11} -\varpi_{11}^TX_9^T \varpi_9 \bigr)\xi(t) \\ &\quad =-\xi(t)^T \begin{bmatrix} \varpi_9\\ \varpi_{11} \end{bmatrix} ^T \begin{bmatrix} Q_5& X_9\\ * &Q_5 \end{bmatrix} \begin{bmatrix} \varpi_9\\ \varpi_{11} \end{bmatrix} \xi(t). \end{aligned}$$
(27)

Note that when τ(t)=0 or τ(t)=τ 2, we have ϖ 9 ξ(t)=0 or ϖ 11 ξ(t)=0, respectively. Thus, inequality (27) still holds.

On the other hand, from Lemma 2 we have

$$\begin{aligned} &\tau_2\int_{t-{\tau_2}}^t { \dot{y}(s)^TQ_6\dot{y}(s)} \,\mathrm{d}s \\ &\quad =\tau_2\int_{t-\tau(t)}^t { \dot{y}(s)^TQ_6\dot{y}(s)} \,\mathrm{d}s+\tau _2\int_{t-{\tau_2}}^{t-\tau(t)} {\dot{y}(s)^TQ_6 \dot{y}(s)} \,\mathrm{d}s \\ &\quad = \bigl[\tau(t)+\bigl({\tau_2}-\tau(t)\bigr) \bigr]\int _{t-\tau(t)}^t {\dot{y}(s)^TQ_6 \dot{y}(s)}\, \mathrm{d}s \\ &\qquad +\bigl[\bigl({\tau_2}-\tau(t)\bigr)+\tau(t) \bigr]\int _{t-{\tau_2}}^{t-\tau(t)} {\dot{y}(s)^TQ_6 \dot{y}(s)} \,\mathrm{d}s \\ &\quad \ge\biggl\{1+\frac{{{\tau_2}-\tau(t)}}{\tau_2} \biggr\}\times \tau(t)\int_{t-\tau(t)}^t {\dot{y}(s)^TQ_6\dot{y}(s)} \,\mathrm{d}s \\ &\qquad + \biggl\{1+\frac{{\tau(t)}}{\tau_2} \biggr\} \times\bigl({\tau _2}-\tau (t)\bigr)\int_{t-{\tau_2}}^{t-\tau(t)} {\dot{y}(s)^TQ_6 \dot{y}(s)}\, \mathrm{d}s \\ &\quad \ge\biggl\{1+\frac{{{\tau_2}-\tau(t)}}{\tau_2} \biggr\} \biggl (\int_{t-\tau (t)}^t \dot{y}(s)\,\mathrm{d}s \biggr)^TQ_6 \biggl(\int _{t-\tau(t)}^t \dot{y}(s)\,\mathrm{d}s \biggr) \\ &\qquad + \biggl\{1+\frac{{\tau(t)}}{\tau_2} \biggr\} \biggl(\int _{t-{\tau _2}}^{t-\tau(t)} \dot{y}(s)\,\mathrm{d}s \biggr)^TQ_6 \biggl(\int _{t-{\tau _2}}^{t-\tau(t)} \dot{y}(s)\,\mathrm{d}s \biggr) \\ &\quad = \biggl\{1+\frac{{{\tau_2}-\tau(t)}}{\tau_2} \biggr\} \bigl [y(t)-y\bigl(t-\tau(t)\bigr) \bigr]^TQ_6 \bigl[y(t)-y\bigl(t-\tau(t)\bigr) \bigr] \\ &\qquad + \biggl\{1+\frac{{\tau(t)}}{\tau_2} \biggr\} \bigl[y\bigl (t-\tau(t)\bigr)-y(t- \tau_2) \bigr]^TQ_6 \bigl[y\bigl(t-\tau(t) \bigr)-y(t-\tau_2) \bigr]. \end{aligned}$$
(28)

Similarly, we get that

$$\begin{aligned} &\tau_{12}\int_{t-{\tau_2}}^{t-{\tau_1}} { \dot{y}(s)^TQ_8\dot{y}(s)}\, \mathrm{d}s \\ &\quad \ge\biggl\{1+\frac{{{\tau_2}-\tau(t)}}{{ {\tau_2-\tau_1 } }} \biggr\} \bigl[y(t-\tau_1)-y \bigl(t-\tau(t)\bigr) \bigr]^TQ_8 \bigl[y(t- \tau_1)-y\bigl(t-\tau(t)\bigr) \bigr] \\ &\qquad + \biggl\{1+\frac{{\tau(t)-\tau_1}}{{ {\tau_2-\tau _1 } }} \biggr\} \bigl[y\bigl(t-\tau(t) \bigr) -y(t-\tau_2) \bigr]^TQ_8 \bigl[y \bigl(t-\tau(t)\bigr)-y(t-\tau_2) \bigr]. \end{aligned}$$
(29)

When τ 1<τ(t)<τ 2, from Lemma 2 we get

$$\begin{aligned} &{-}({\tau_2}-{\tau_1})\int_{t-{\tau_2}}^{t-{\tau_1}} {{y}(s)^T{Q_7}y(s)}\,\mathrm{d}s \\ &\quad =-({\tau_2}-{\tau_1})\int_{t-\tau(t)}^{t-{\tau_1}} {{y}(s)^T{Q_7}y(s)}\,\mathrm{d}s-({\tau_2}-{ \tau_1})\int_{t-{\tau _2}}^{t-\tau(t)} {{y}(s)^T{Q_7}y(s)}\,\mathrm{d}s \\ &\quad \leq\xi(t)^T \biggl[-\frac{{\tau_2}-{\tau_1}}{\tau(t)-{\tau _1}}\varpi_{10}^T{Q_7} \varpi_{10} -\frac{{\tau_2}-{\tau_1}}{\tau_2-\tau(t)}\varpi_{11}^T{Q_7} \varpi_{11} \biggr]\xi(t) \\ &\quad =\xi(t)^T \biggl[-\varpi_{10}^T{Q_7} \varpi_{10}-\frac{{\tau_2}-\tau (t)}{\tau(t)-{\tau_1}}\varpi_{10}^T{Q_7} \varpi_{10} \\ &\qquad -\varpi_{11}^T{Q_7} \varpi_{11}-\frac{\tau (t)-{\tau_1}}{\tau_2-\tau(t)}\varpi_{11}^T{Q_7} \varpi_{11} \biggr]\xi(t). \end{aligned}$$
(30)

In addition, from (8) we have

$$\xi(t)^T \begin{bmatrix} \sqrt{\frac{{\tau_2}-\tau(t)}{\tau(t)-\tau _1}}\varpi _{10}\\ -\sqrt{\frac{\tau(t)-\tau_1}{{\tau_2}-\tau(t)}}\varpi_{11} \end{bmatrix} ^T \begin{bmatrix} Q_7& X_{10}\\ *&Q_7 \end{bmatrix} \begin{bmatrix} \sqrt{\frac{{\tau_2}-\tau(t)}{\tau(t)-\tau _1}}\varpi _{10}\\ -\sqrt{\frac{\tau(t)-\tau_1}{{\tau_2}-\tau(t)}}\varpi_{11} \end{bmatrix} \xi(t)\ge0, $$

which implies

$$\begin{aligned} &\xi(t)^T \biggl[\frac{{\tau_2}-\tau(t)}{\tau(t)-{\tau_1}}\varpi _{10}^T{Q_7} \varpi_{10} +\frac{\tau(t)-{\tau_1}}{\tau_2-\tau(t)}\varpi_{11}^T{Q_7} \varpi_{11} \biggr]\xi(t) \\ &\quad \geq\xi(t)^T \bigl(\varpi_{10}^TX_{10} \varpi_{11}+\varpi_{11}^TX_{10}^T \varpi_{10} \bigr)\xi(t). \end{aligned}$$
(31)

Then, we can get from (30) and (31) that

$$\begin{aligned} & {-}({\tau_2}-{\tau_1})\int_{t-{\tau_2}}^{t-{\tau_1}} {{y}(s)^T{Q_7}y(s)}\,\mathrm{d}s \\ &\quad \leq\xi(t)^T \bigl(-\varpi_{10}^T{Q_7} \varpi_{10}-\varpi_{11}^T{Q_7} \varpi_{11}-\varpi_{10}^TX_{10} \varpi_{11} -\varpi_{11}^TX_{10}^T \varpi_{10} \bigr)\xi(t) \\ &\quad =-\xi(t)^T \begin{bmatrix} \varpi_{10}\\ \varpi_{11} \end{bmatrix} ^T \begin{bmatrix} Q_7& X_{10}\\ *&Q_7 \end{bmatrix} \begin{bmatrix} \varpi_{10}\\ \varpi_{11} \end{bmatrix} \xi(t). \end{aligned}$$
(32)

Note that when τ(t)=τ 1 or τ(t)=τ 2, we have ϖ 10 ξ(t)=0 or ϖ 11 ξ(t)=0, respectively. Thus, inequality (32) still holds.

It is easy to verify that

$$\begin{aligned} &\int_{t - \tau_2 }^t {\int_\theta^t {\dot{y}{{(s)}^T} {Q_9}\dot{y}(s)} } \,\mathrm{d}s\,\mathrm{d} \theta\\ &\quad = \int_{t - \tau_2 }^t { ( {\tau_2 - t + s} )} \dot{y}{(s)^T} {Q_9}\dot{y}(s)\,\mathrm{d}s \\ &\quad =\int_{t - \tau(t)}^t { ( {\tau_2 - t + s} )} \dot{y}{(s)^T} {Q_9}\dot{y}(s)\,\mathrm{d}s+\int _{t - \tau_2 }^{t - \tau(t)} { ( {\tau_2 - t + s} )} \dot{y}{(s)^T} {Q_9}\dot{y}(s)\,\mathrm{d}s. \end{aligned}$$

Considering the case 0<τ(t)≤τ 2, based on Lemmas 1 and 2, we get the following inequalities for any matrices X 1,X 2 of appropriate dimensions

$$\begin{aligned} &{-} \int_{t - \tau(t)}^t { ( {\tau_2 - t + s} )} \dot{y}{(s)^T} {Q_9}\dot{y}(s)\,\mathrm{d}s \\ &\quad = - \int_{t - \tau(t)}^t { \bigl[ {\tau(t) - t + s} \bigr]} \dot{y}{(s)^T} {Q_9}\dot{y}(s)\,\mathrm{d}s - \int _{t - \tau(t)}^t { \bigl[ {\tau_2- \tau(t)} \bigr]} \dot{y}{(s)^T} {Q_9}\dot{y}(s)\,\mathrm{d}s \\ &\quad \le\int_{t - \tau(t)}^t { \bigl[ {\tau(t) - t + s} \bigr]} \bigl\{ {\xi{(t)^T} {\mathcal{X}_1}Q_9^{ - 1} \mathcal{X}_1^T\xi(t) + 2\xi{(t)^T} { \mathcal{X}_1}\dot{y}(s)} \bigr\}\,\mathrm{d}s \\ &\qquad - \frac{{\tau_2 - \tau(t)}}{{\tau(t)}}{ \biggl( {\int_{t - \tau (t)}^t { \dot{y}(s)\,\mathrm{d}s} } \biggr)^T} {Q_9} \biggl( {\int _{t - \tau(t)}^t {\dot{y}(s)\,\mathrm{d}s} } \biggr) \\ &\quad \le\frac{1}{2}\tau{(t)^2}\xi{(t)^T} { \mathcal{X}_1}Q_9^{ - 1}\mathcal {X}_1^T\xi(t)+ 2\xi{(t)^T} { \mathcal{X}_1} \biggl[ {\tau(t)y(t) - \int_{t - \tau(t)}^t {y(s)\,\mathrm{d}s} } \biggr] \\ &\qquad - \frac{{\tau_2 - \tau(t)}}{{\tau_2 }} \bigl[ {y{(t)} - y\bigl(t-\tau(t)\bigr) } \bigr]^T{Q_9} \bigl[ {y(t) - y\bigl(t-\tau(t)\bigr) } \bigr]. \end{aligned}$$
(33)

It is easy to see that (33) holds for any t with τ(t)=0. Again by Lemma 1, the following inequalities hold for any matrices X 3,X 4 of appropriate dimensions:

$$\begin{aligned} &{-} \int_{t - \tau_2 }^{t - \tau(t)} { ( {\tau_2 - t + s} )} \dot{y}{(s)^T} {Q_9}\dot{y}(s)\,\mathrm{d}s \\ &\quad \le- \int_{t - \tau_2 }^{t - \tau(t)} {(\tau_2 } - t + s) \bigl\{ {\xi{(t)^T} {\mathcal{X}_2}Q_9^{ - 1}{ \mathcal{X}_2}\xi(t) + 2\xi{(t)^T} {\mathcal{X}_2} \dot{y}(s)} \bigr\}\,\mathrm{d}s \\ &\quad = \frac{1}{2}{ \bigl[ {\tau_2 - \tau(t)} \bigr]^2}\xi{(t)^T} {\mathcal{X}_2}Q_9^{ - 1}{ \mathcal{X}_2}\xi(t) \\ &\qquad + 2\xi{(t)^T} {\mathcal{X} _2} \biggl\{ { \bigl[ { \tau_2 - \tau(t)} \bigr]{y\bigl(t-\tau(t)\bigr) } - \int _{t - \tau_2 }^{t - \tau(t)} {y(s)\,\mathrm{d}s} } \biggr\}. \end{aligned}$$
(34)

Furthermore, we have

$$\begin{aligned} &\int_{t-\tau_2}^{t-\tau_1} {\int_\theta^t {\dot{y}{{(s)}^T} {Q_{10}}\dot{y}(s)} } \,\mathrm{d}s\,\mathrm{d} \theta\\ &\quad = \int_{t - \tau_2 }^{t-\tau_1} { ( {\tau_2 - t + s} )} \dot{y}{(s)^T} {Q_{10}}\dot{y}(s)\,\mathrm{d}s \\ &\quad =\int_{t - \tau(t)}^{t-\tau_1} { ( {\tau_2 - t + s} )} \dot{y}{(s)^T} {Q_{10}}\dot{y}(s)\,\mathrm{d}s+\int _{t - \tau_2 }^{t - \tau(t)} { ( {\tau_2 - t + s} )} \dot{y}{(s)^T} {Q_{10}}\dot{y}(s)\,\mathrm{d}s. \end{aligned}$$

When τ 1<τ(t)≤τ 2, based on Lemmas 1 and 2, the following inequalities hold for any matrices X 5,X 6 of appropriate dimensions

$$\begin{aligned} &{-} \int_{t - \tau(t)}^{t-\tau_1} { ( {\tau_2 - t + s} )} \dot{y}{(s)^T} {Q_{10}}\dot{y}(s)\,\mathrm{d}s \\ &\quad = - \int_{t - \tau(t)}^{t-\tau_1} { \bigl[ {\tau(t) - t + s} \bigr]} \dot{y}{(s)^T} {Q_{10}}\dot{y}(s)\,\mathrm{d}s - \int _{t - \tau(t)}^{t-\tau _1} { \bigl[ {\tau_2 - \tau(t)} \bigr]} \dot{y}{(s)^T} {Q_{10}}\dot{y}(s)\,\mathrm{d}s \\ &\quad \le\int_{t - \tau(t)}^{t-\tau_1} { \bigl[ {\tau(t) - t + s} \bigr]} \bigl\{ {\xi{(t)^T} {\mathcal{X}_3}Q_{10}^{ - 1} \mathcal{X}_3^T\xi(t) + 2\xi{(t)^T} { \mathcal{X}_3}\dot{y}(s)} \bigr\}\,\mathrm{d}s \\ &\qquad - \frac{{\tau_2 - \tau(t)}}{{\tau(t)-\tau_1}}{ \biggl( {\int_{t - \tau (t)}^{t-\tau_1} { \dot{y}(s)\,\mathrm{d}s} } \biggr)^T} {Q_{10}} \biggl( {\int _{t - \tau(t)}^{t-\tau_1} {\dot{y}(s)\,\mathrm{d}s} } \biggr) \\ &\quad \le\frac{1}{2} \bigl[\tau(t)-\tau_1 \bigr]^2 \xi{(t)^T} {\mathcal{X}_3}Q_{10}^{ - 1} \mathcal{X}_3^T\xi(t)+ 2\xi{(t)^T} {\mathcal {X}_3} \biggl[ {\tau(t)y(t) - \int_{t - \tau(t)}^{t-\tau_1} {y(s)\,\mathrm{d}s} } \biggr] \\ &\qquad - \frac{{\tau_2 - \tau(t)}}{\tau_2-\tau_1} \bigl[ {y{{(t-\tau_1)}} - y \bigl(t-\tau(t)\bigr) } \bigr]^T{Q_{10}} \bigl[ {y(t- \tau_1) - y\bigl(t-\tau(t)\bigr) } \bigr]. \end{aligned}$$
(35)

It is easy to see that (35) holds for any t with τ(t)=0. Again by Lemma 1, the following inequalities hold for any matrices X 7,X 8 of appropriate dimensions

$$\begin{aligned} &{-} \int_{t - \tau_2 }^{t - \tau(t)} { ( {\tau_2 - t + s} )} \dot{y}{(s)^T} {Q_{10}}\dot{y}(s)\,\mathrm{d}s \\ &\quad \le- \int_{t - \tau_2 }^{t - \tau(t)} {(\tau_2 } - t + s) \bigl\{ {\xi{(t)^T} {\mathcal{X}_4}Q_{10}^{ - 1}{ \mathcal{X}_4}\xi(t) + 2\xi{(t)^T} {\mathcal{X}_4} \dot{y}(s)} \bigr\}\,\mathrm{d}s \\ &\quad = \frac{1}{2}{ \bigl[ {\tau_2 - \tau(t)} \bigr]^2}\xi{(t)^T} {\mathcal{X}_4}Q_{10}^{ - 1}{ \mathcal{X}_4}\xi(t) \\ &\qquad + 2\xi{(t)^T} {\mathcal{X} _4} \biggl\{ { \bigl[ { \tau_2 - \tau(t)} \bigr]{y\bigl(t-\tau(t)\bigr) } - \int _{t - \tau_2 }^{t - \tau(t)} {y(s)\,\mathrm{d}s} } \biggr\}. \end{aligned}$$
(36)

Using Lemma 2 again, we obtain that

$$\begin{aligned} &\sigma\int_{t-\sigma}^t {{y}(s)^TQ_{11}y(s)}\, \mathrm{d}s \ge{ \biggl( {\int_{t-\sigma}^t {y(s)}\, \mathrm{d}s} \biggr)^T}Q_{11} \biggl( {\int _{t- \sigma}^t {y(s)} \,\mathrm{d}s} \biggr), \\ & \begin{aligned}[t] \sigma\int_{t-\sigma}^t {\dot{y}(s)^TQ_{12} \dot{y}(s)} \,\mathrm{d}s &\ge{ \biggl( {\int_{t-\sigma}^t {\dot{y}(s)} \,\mathrm{d}s} \biggr)^T}Q_{12} \biggl( {\int _{t- \sigma}^t {\dot{y}(s)}\, \mathrm{d}s} \biggr) \\ & ={ \bigl[ y(t)-y(t-\sigma) \bigr]^T}Q_{12} \bigl[ y(t)-y(t-\sigma) \bigr]. \end{aligned} \end{aligned}$$
(37)

By the Cauchy–Schwarz inequality and Eq. (3), the following inequality holds:

$$\begin{aligned} &\sum_{j=1}^n {r_{1j}\int _0^\infty{{k_j}(\theta)g_j^2 \bigl({y_j}(t )\bigr)} } \,\mathrm{d}\theta-\sum _{j= 1}^n {r_{1j}\int_0^\infty {{k_j}(\theta)g_j^2\bigl({y_j}(t- \theta)\bigr)} } \,\mathrm{d}\theta \\ &\quad = {g}\bigl(y(t)\bigr)^TR_1g\bigl(y(t)\bigr)-\sum _{j=1}^n {r_{1j}\int _0^\infty{{k_j}(\theta)\,\mathrm{d} \theta} \int_0^\infty{{k_j}(\theta )g_j^2\bigl({y_j}(t- \theta)\bigr)} }\, \mathrm{d}\theta \\ &\quad \le{g}\bigl(y(t)\bigr)^TR_1g\bigl(y(t)\bigr)-\sum _{j=1}^n {r_{1j}{{ \biggl( {\int _0^\infty{{k_j}(\theta){g_j} \bigl({y_j}(t-\theta)\bigr)\,\mathrm{d}\theta} } \biggr)}^2}} \\ &\quad = {g}\bigl(y(t)\bigr)^TR_1g\bigl(y(t)\bigr)- \biggl( { \int_{-\infty}^t {k(s)g\bigl(y(s)\bigr)\,\mathrm{d}s} } \biggr)R_1 \biggl( {\int_{-\infty}^t {k(s)g\bigl(y(s)\bigr)\,\mathrm{d}s} } \biggr). \end{aligned}$$
(38)

Moreover, based on (H2), the following matrix inequalities hold for any positive diagonal matrices \(U=\operatorname{diag}\{ u_{1},u_{2},\dots, u_{n}\}\) and \(W=\operatorname{diag}\{ w_{1},w_{2},\dots, w_{n}\}\):

$$\begin{aligned} 0& \le\sum_{i=1}^n {-{u_{i}} \bigl( {g_i^2\bigl({y_i}(t) \bigr)-l_i^2y_i^2(t)} \bigr)} \\ &=\xi(t)^T \bigl(-\varpi_{5}^T{U} \varpi_{5}+\varpi_1^TL{U}L \varpi_1 \bigr)\xi(t), \end{aligned}$$
(39)
$$\begin{aligned} 0& \le\sum_{i=1}^n {-{w_{i}} \bigl( {g_i^2\bigl({y_i}\bigl(t-\tau(t) \bigr)\bigr)-l_i^2y_i^2\bigl(t- \tau(t)\bigr)} \bigr)} \\ &=\xi(t)^T \bigl(-\varpi_6^T{W} \varpi_6+{\varpi_2^T}L{W}L \varpi_2 \bigr)\xi(t). \end{aligned}$$
(40)

Again by utilizing Lemmas 1 and 4 we get the following inequality with any positive diagonal matrices R 3 and \(S=\operatorname{diag}\{ s_{1}, s_{2},\dots, s_{n}\}\):

$$\begin{aligned} 0 &= 2\sum_{i=1}^n \dot{y}_{i}(t)^Ts_{i} \Biggl[-\dot{y}_{i}(t)-{d_i} {y_i}(t-\sigma)+ \sum_{j=1}^n a_{ij}{g_j} \bigl({y_j}(t)\bigr) \\ &\quad +\sum_{j=1}^n b_{ij}{g_j}\bigl({y_j}\bigl(t-\tau(t)\bigr) \bigr) \\ &\quad + \bigwedge_{j=1}^n \alpha_{ij}\int_{-\infty}^t {k_j}(t- s){f_j}\bigl({y_j}(s)+x_j^* \bigr) \,\mathrm{d}s- \bigwedge_{j= 1}^n \alpha_{ij}\int_{-\infty}^t {k_j}(t-s){f_j}\bigl(x_j^*\bigr)\, \mathrm{d}s \\ &\quad +\bigvee_{j=1}^n \beta_{ij}\int_{-\infty}^t {k_j}(t-s){f_j}\bigl({y_j}(s)+x_j^* \bigr)\,\mathrm{d}s -\bigvee_{j=1}^n \beta _{ij}\int_{-\infty}^t {k_j}(t-s){f_j} \bigl(x_j^*\bigr)\,\mathrm{d}s \Biggr] \\ &\le2\xi(t)^T \bigl\{{\varpi_8^T} {S} (- \varpi_8-D\varpi_{13}+{A}\varpi_{5}+{B} \varpi_{6} ) \\ &\quad +n\varpi_8^T{S}\varUpsilon R_3^{-1}\varUpsilon{S}\varpi_8+ \varpi _7^T{R_3}\varpi_7 \bigr\}\xi(t). \end{aligned}$$
(41)

Substituting (17)–(41) into (16), we derive

$$ {\rm D}^+{V}\bigl(t,y(t)\bigr)\leq\xi(t)^T (\varLambda+ \varLambda_R+\varLambda_\tau) \xi(t),\quad t \in[{t_{k- 1}},{t_k}),k \in{\mathbf{Z}_+}, $$
(42)

where

$$\begin{aligned} \varLambda_R&=n\varpi_1^TP\varUpsilon R_2^{-1}\varUpsilon P\varpi_1+n{\varpi _8^T} {S}\varUpsilon R_3^{-1} \varUpsilon{S}\varpi_8+n\varpi_{12}^TPD\varUpsilon R_4^{-1}\varUpsilon DP\varpi_{12}, \\ \varLambda_\tau&=\frac{1}{2}\tau{(t)^2} { \mathcal{X}_1}Q_9^{ - 1}\mathcal {X}_1^T+ \tau(t)\operatorname{sym} \bigl[( \mathcal{X}_1 +\mathcal{X}_3)\varpi_1 \bigr]+ \frac{1}{2}{ \bigl[ {\tau_2 - \tau(t)} \bigr]^2} {\mathcal{X}_2}Q_9^{ - 1}{ \mathcal{X}_2} \\ &\quad - \frac{{\tau_2 - \tau(t)}}{\tau_2}(\varpi_1-\varpi_2)^T(Q_6+Q_9) (\varpi_1-\varpi_2) \\ &\quad + \bigl[ {\tau_2 - \tau(t)} \bigr]\operatorname{sym} \bigl[({\mathcal{X} _2}+{\mathcal{X} _4})\varpi_2 \bigr] \\ &\quad + \frac{1}{2} \bigl[\tau(t)-\tau_1 \bigr]^2{ \mathcal{X}_3}Q_{10}^{-1}\mathcal{X}_3^T- \frac{{\tau_2-\tau(t)}}{\tau_2-\tau_1} (\varpi_3-\varpi_2)^T(Q_8+Q_{10}) (\varpi_3-\varpi_2) \\ &\quad + \frac{1}{2}{ \bigl[ {\tau_2 - \tau(t)} \bigr]^2} {\mathcal{X}_4}Q_{10}^{ - 1}{ \mathcal{X}_4} \\ &\quad - (\varpi_2-\varpi_4)^T \biggl[\frac{{\tau(t)}}{\tau_2}Q_6+\frac{{\tau (t)-\tau_1}}{{ {\tau_2-\tau_1 } }}Q_8 \biggr](\varpi_2-\varpi_4). \end{aligned}$$

Since the coefficient

$$\frac{1}{2} \bigl({\mathcal{X}_1}Q_9^{ - 1} \mathcal{X}_1^T+{\mathcal{X}_2}Q_9^{ - 1}{ \mathcal{X}_2} +{\mathcal{X}_3}Q_{10}^{ - 1} \mathcal{X}_3^T+{\mathcal{X}_4}Q_{10}^{ - 1}{ \mathcal{X}_4} \bigr) $$

of τ(t)2 in Λ τ is nonnegative definite, based on Lemma 6, we have that Λ+Λ R +Λ τ <0 if and only if the following two inequalities hold simultaneously:

$$\begin{aligned} &\varLambda+\varLambda_R+\frac{1}{2} {\tau_2^2} {\mathcal{X}_1}Q_9^{ - 1}\mathcal{X}_1^T+ \tau_2\operatorname{sym} \bigl[(\mathcal{X}_1+\mathcal {X}_3)\varpi_1 \bigr] \\ &\quad + \frac{1}{2} [\tau_2-\tau_1 ]^2{\mathcal{X}_3}Q_{10}^{-1} \mathcal{X}_3^T - (\varpi_2- \varpi_4)^T(Q_6+Q_8) (\varpi _2-\varpi_4)<0, \end{aligned}$$
(43)
$$\begin{aligned} & \varLambda+\varLambda_R+\frac{1}{2} {\tau_1^2} {\mathcal{X}_1}Q_9^{ - 1}\mathcal{X}_1^T+ \tau_1\operatorname{sym} \bigl[(\mathcal{X}_1+\mathcal {X}_3)\varpi_1 \bigr] \\ &\quad + \frac{1}{2}{ [ {\tau_2-\tau_1} ]^2} \bigl({\mathcal{X}_2}Q_9^{-1}{ \mathcal{X}_2}+{\mathcal{X}_4}Q_{10}^{ - 1}{ \mathcal{X}_4} \bigr) \\ &\quad - \frac{\tau_2-\tau_1}{\tau_2}(\varpi_1-\varpi_2)^T(Q_6+Q_9) (\varpi_1-\varpi_2) + ( {\tau_2- \tau_1} )\operatorname{sym} \bigl[({\mathcal{X} _2}+{ \mathcal{X} _4})\varpi_2 \bigr] \\ &\quad -(\varpi_3-\varpi_2)^T(Q_8+Q_{10}) (\varpi_3-\varpi_2)-\frac{\tau_1}{\tau_2} ( \varpi_2-\varpi_4)^TQ_6(\varpi _2-\varpi_4)<0. \end{aligned}$$
(44)

From the well-known Schur complement, we deduce that inequalities (43) and (44) are equivalent to inequalities (9) and (10), respectively. Therefore, if inequalities (9) and (10) hold, then from (42) we derive that

$$\mathrm{D}^+{V}\bigl(t,y(t)\bigr)<0\quad \forall t\in[t_{k - 1},t_k), \ k \in\mathbf{Z}_+. $$

When t=t k , kZ +, from condition (H5) we have

$$ V\bigl(t_k,y(t_k)\bigr)={V} \bigl({t_k^-},y\bigl({t_k^-}\bigr)\bigr)+ y \bigl({t_k^-}\bigr)^T \bigl[{(I - {\varGamma _k})^T}P(I - {\varGamma_k})-P \bigr]y \bigl({t_k^-}\bigr). $$
(45)

On the other hand, it follows from (6) that

$$ \begin{pmatrix} I & 0 \\ 0 & P^{ - 1} \end{pmatrix} \begin{pmatrix} P & (I - \varGamma_k)P \\ *& P \\ \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & P^{ - 1} \end{pmatrix} \ge0, $$

that is,

$$ \begin{pmatrix} P & I - {\varGamma_k} \\ * & P^{ - 1} \end{pmatrix} \ge0. $$

From the Schur complement we have

$$ P - {(I - {\varGamma_k})^T}P(I - { \varGamma_k}) \ge0. $$
(46)

By combining (45) with (46) we obtain

$${V}\bigl({t_k},y({t_k})\bigr)\le{V} \bigl({t_k^-},y\bigl({t_k^-}\bigr)\bigr),\quad k \in{ \mathbf{Z}_ + }. $$

Therefore, system (5) is asymptotically stable, which implies that the equilibrium point of model (2) is globally asymptotically stable. This ends the proof of Theorem 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, CD., Wang, Y. & Wang, Z. Global Stability of Fuzzy Cellular Neural Networks with Mixed Delays and Leakage Delay Under Impulsive Perturbations. Circuits Syst Signal Process 33, 1067–1094 (2014). https://doi.org/10.1007/s00034-013-9677-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9677-1

Keywords

Navigation