Skip to main content
Log in

Trajectory Switching Control of Robotic Manipulators Based on RBF Neural Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we discuss the trajectory switching neural control problem for the switching model of a serial n-joint robotic manipulator. The key feature of this paper is to provide the dual design of the control law for the developed adaptive switching neural controller and the associated robust compensation control law. RBF Neural Networks (NNs) are employed to approximate unknown functions of robotic manipulators and a robust controller is designed to compensate the approximation errors of the neural networks and external disturbance. Via switched multiple Lyapunov function method, the adaptive updated laws and the admissible switching signals have been developed to guarantee that the resulting closed-loop system is asymptotically Lyapunov stable such that the joint position follows any given bounded desired output signal. Finally, we give a simulation example of a two-joint robotic manipulator to demonstrate the proposed methods and make a comparative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Ailon, M.I. Gil, E.S. Choi, B.H. Ahn, Linear stabilizing controllers for electrically driven flexible-joint robots with uncertain parameters. Circuits Syst. Signal Process. 18(2), 131–147 (1999)

    Article  MATH  Google Scholar 

  2. L.I. Allerhand, U. Shaked, Robust stability and stabilization of linear switched systems with dwell time. IEEE Trans. Autom. Control 56(2), 381–386 (2011)

    Article  MathSciNet  Google Scholar 

  3. O. Barambones, V. Etxebarria, Robust neural control for robotic manipulators. Automatica 38(2), 235–242 (2002)

    Article  MATH  Google Scholar 

  4. L. Bascetta, P. Rocco, Revising the robust-control design for rigid robot manipulators. IEEE Trans. Robot. 26(1), 180–187 (2010)

    Article  Google Scholar 

  5. M. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Chen, A collaborative fuzzy-neural system for global CO2 concentration forecasting. Int. J. Innov. Comput. Inf. Control 8(11), 7679–7696 (2012)

    Google Scholar 

  7. Y. Chen, S. Fei, K. Zhang, Z. Fu, Control synthesis of discrete-time switched linear systems with input saturation based on minimum dwell time approach. Circuits Syst. Signal Process. 31(2), 779–795 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. C.S. Chiu, K.Y. Lian, T.C. Wu, Robust adaptive motion/force tracking control design for uncertain constrained robot manipulators. Automatica 40, 2111–2119 (2004)

    MATH  MathSciNet  Google Scholar 

  9. S.S. Ge, T.H. Lee, C.J. Harris, Adaptive Neural Network Control of Robotic Manipulators (World Scientific, London, 1998)

    Book  Google Scholar 

  10. T.T. Han, S.S. Ge, T.T. Lee, Adaptive neural control for a class of switched nonlinear systems. Syst. Control Lett. 58, 109–118 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. G.B. Huang, P. Saratchandran, N. Sundararajan, A generalized growing and pruning RBF (GGAP-RBF) neural network. IEEE Trans. Neural Netw. 16, 57–67 (2005)

    Article  Google Scholar 

  12. N.V. Hung, H.D. Tuan, T. Narikiyo, P. Apkarian, Adaptive control for nonlinearly parameterized uncertainties in robot manipulators. IEEE Trans. Control Syst. Technol. 16(3), 458–468 (2008)

    Article  Google Scholar 

  13. J. Imura, T. Sugie, T. Yoshikawa, Adaptive robust control of robot manipulators-theory and experiment. IEEE Trans. Robot. Autom. 10(5), 705–710 (1994)

    Article  MathSciNet  Google Scholar 

  14. D. Jeon, M. Tomizuka, Learning hybrid force and position control of robot manipulators. IEEE Trans. Robot. Autom. 9, 423–431 (1996)

    Article  Google Scholar 

  15. F.L. Lewis, C.T. Abdallah, D.M. Dawson, Control of Robot Manipulators (Macmillan, New York, 1993)

    Google Scholar 

  16. D. Liberzon, Switching in Systems and Control (Birkhauser, Boston, 2003)

    Book  MATH  Google Scholar 

  17. J. Lin, S. Fei, Q. Wu, Reliable H filtering for discrete-time switched singular systems with time-varying delay. Circuits Syst. Signal Process. 31(3), 1191–1214 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Long, S. Fei, Neural networks stabilization and disturbance attenuation for nonlinear switched impulsive systems. Neurocomputing 71, 1741–1747 (2008)

    Article  Google Scholar 

  19. L.J. Long, J. Zhao, Control of switched nonlinear systems in p-normal form using multiple Lyapunov functions. IEEE Trans. Autom. Control 57(5), 1285–1291 (2012)

    Article  MathSciNet  Google Scholar 

  20. S. Purwar, I.N. Kar, A.N. Jha, Adaptive output feedback tracking control of robot manipulators using position measurements only. Expert Syst. Appl. 34, 2789–2798 (2008)

    Article  Google Scholar 

  21. X. Su, Z. Li, Y. Feng, New global exponential stability criteria for interval delayed neural networks. Proc of the institution of mechanical engineers part I. J. Syst. Control Eng. 225(11), 125–136 (2011)

    Google Scholar 

  22. Z.D. Sun, S.S. Ge, Analysis and synthesis of switched linear control systems. Automatica 41, 181–195 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Sun, H. Pei, Y. Pan et al., Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74, 2377–2384 (2011)

    Article  Google Scholar 

  24. W. Sun, Z. Zhao, H. Gao, Saturated adaptive robust control of active suspension systems. IEEE Trans. Ind. Electron. 60(9), 3889–3896 (2012)

    Article  Google Scholar 

  25. W. Sun, H. Gao, O. Kaynak, Adaptive backstepping control for active suspension systems with hard constraints. IEEE Trans. Mechatron. 18(3), 1072–1079 (2013)

    Article  Google Scholar 

  26. P. Tomei, Robust adaptive friction compensation for tracking control of robot manipulators. IEEE Trans. Autom. Control 45(11), 2164–2169 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Tomlin, G.J. Pappas, S. Sastry, Conflict resolution for air traffic management: a study in multi-agent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. A. Turnip, K. Hong, Classifying mental activities from eeg-p300 signals using adaptive neural networks. Int. J. Innov. Comput. Inf. Control 8(9), 6429–6443 (2012)

    Google Scholar 

  29. P.P. Varaiya, Smart car on smart roads: problems of control. IEEE Trans. Autom. Control 38(2), 195–207 (1993)

    Article  MathSciNet  Google Scholar 

  30. L. Wang, T. Chai, Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Ind. Electron. 56(9), 3296–3304 (2009)

    Article  Google Scholar 

  31. L. Wang, T. Chai, C. Yang, Neural-network-based contouring control for robotic manipulators in operational space. IEEE Trans. Control Syst. Technol. 20(4), 1073–1080 (2012)

    Article  Google Scholar 

  32. L. Wei, C. Cheng, A hybrid recurrent neural networks model based on synthesis features to forecast the Taiwan stock market. Int. J. Innov. Comput. Inf. Control 8(8), 5559–5571 (2012)

    Google Scholar 

  33. L. Wu, Z. Feng, W. Zheng, Exponential stability analysis for delayed neural networks with switching parameters: average dwell time approach. IEEE Trans. Neural Netw. 21(9), 1396–1407 (2010)

    Article  Google Scholar 

  34. Z. Xiang, R. Wang, B. Jiang, Nonfragile observer for discrete-time switched nonlinear systems with time delay. Circuits Syst. Signal Process. 30(1), 73–87 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. G.M. Xie, L. Wang, Periodic stabilizability of switched linear control systems. Automatica 45, 2141–2148 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. R. Yang, H. Gao, P. Shi, Novel robust stability criteria for stochastic Hopfield neural networks with time delays. IEEE Trans. Syst. Man Cybern., Part B 39(2), 467–474 (2009)

    Article  Google Scholar 

  37. H.K. Young, L.L. Frank, M.D. Darren, Intelligent optimal control of robotic manipulators using neural networks. Automatica 36, 1355–1364 (2000)

    Article  MATH  Google Scholar 

  38. L. Yu, S. Fei, X. Li, RBF neural networks-based robust adaptive tracking control for switched uncertain nonlinear systems. Int. J. Control. Autom. Syst. 10(2), 437–443 (2012)

    Article  Google Scholar 

  39. D. Zhang, L. Yu, Q.G. Wang et al., Estimator design for discrete-time switched neural networks with asynchronous switching and time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 827–834 (2012)

    Article  MathSciNet  Google Scholar 

  40. G.D. Zong, L.L. Hou, Y.Q. Wu, Robust L2-L∞ guaranteed cost filtering for uncertain discrete-time switched system with mode-dependent time-varying delays. Circuits Syst. Signal Process. 30(1), 17–33 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 61104068, 61174076, 61104119), Natural Science Foundation of Jiangsu Province, China (BK20130331, BK20130322), China Postdoctoral Science Foundation funded projects (2013M530268, 2013M531401), Jiangsu Planned Projects for Postdoctoral Research Funds (1301150C), Natural Science Fund for Colleges and Universities in Jiangsu Province (13KJB510032), the Key Technology Research and Development Program of Suzhou, China (SG201319). The authors would like to thank the referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Fei, S., Huang, J. et al. Trajectory Switching Control of Robotic Manipulators Based on RBF Neural Networks. Circuits Syst Signal Process 33, 1119–1133 (2014). https://doi.org/10.1007/s00034-013-9682-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9682-4

Keywords

Navigation