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Abstract This paper considers output peak controller design for discrete nonhomo-
geneous Markov jump systems under unit-energy disturbance. The mode-dependent
output peak feedback controller is designed to ensure that the resulting closed-loop
system is stochastically stable and the peak of the output is within a specified range.
Furthermore, the optimal energy-to-peak gain indices of the mode-dependent and the
mode-independent state feedback controllers are evaluated and compared. A numeri-
cal example is presented to illustrate the applicability of the results obtained.

Keywords Output peak control · Nonhomogeneous Markov jump system ·
Unit-energy disturbance

1 Introduction

The structures and parameters in many engineering systems tend to vary due to random
variations caused by changes in subsystem interconnection, loss of communication,
or sensor failures. These phenomena are known as “switching”. It often occurs when
a cluster of systems is involved, especially for Networked control systems (NCSs)
[16–18]. Switched systems have been extensively studied in the past 20 years. See
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[25,27] for model reduction, and [26] for asynchronous control. Among switched
systems, linear Markov jump systems (MJSs) belong to a special class of stochastic
switched systems where the switching is driven by a Markov process. The transition
probability (TP), a crucial factor in a Markov process (or chain), determines the behav-
ior and performance of the linear MJS. This type of system has been studied under
the assumption that the TP is fixed or partially unknown for over two decades and
some systematic results are now available (see [13] for control, [20] for gain schedul-
ing, [14] for sliding mode control, [15] for 2-D Markov system, [2,12] for filter, [6]
for finite-time control, and [22] for partly unknown transition probability). However,
these works are under the assumption that the TP is homogeneous, i.e., the underlying
Markov process (or chain) is time invariant. In reality, this assumption may not be
satisfied. A typical example can be found in networked control systems, where the
delay as well as the packet loss is distinct at different time intervals [7]. Thus, the
TP matrix keeps varying throughout the whole time horizon of the control system. In
this case, the TP is time varying, and hence the underlying Markov process (or chain)
is nonhomogeneous [8]. Similar phenomena are also observed in many engineering
systems, such as electronic circuits [5]. Thus, there is an urgent need to develop new
theories and methodologies for dynamical systems with nonhomogeneous TP. It has
attracted an increased interest among the control community, and consequently, some
important results have been obtained. See, for example, [1,21]. More precisely, a two-
level nonhomogeneous Markov chain, which involves arbitrary variation as well as
stochastic variation, is considered in [21]. A feasible and effective scheme to estimate
a time-varying uncertainty by using a bounded convex polyhedron is proposed in [1].
The model considered in [21] is a special case of that considered in [1], where suf-
ficient conditions for stochastic stability of the nonhomogeneous Markov system are
derived.

On the other hand, external disturbances always exist in real life [3]. In fact, it is
a detrimental factor causing the reduction of the performance of a controller. Thus,
controller design with disturbance has always been an active research topic in the
control community. Many control problems can be equivalently transformed into the
controller design problems using the index of “energy-to-peak gain”, “l2 − l∞ gain”,
or “generalized H2 performance” [9–11]. The goal is to ensure that the feedback
system is internally stable, while the closed-loop mapping from the disturbance to the
controlled output is small. In this way, disturbance rejection as well as specifications
of robustness will both be achieved. During the past decade, many results focusing on
external disturbances for MJS have been reported (see [4,23,24] for H∞ control and
filtering, [19] for model reduction), where the H∞ index is widely used to evaluate
the input-output performance of the system under l2 disturbance.

In this paper, we consider an important class of problems, where the objective is
to design an output peak controller for nonhomogeneous Markov jump systems in the
form of [1] under unit-energy disturbance such that the output amplitude stays within
a certain range. Furthermore, a sufficient condition is derived for the design of a output
peak controller which will ensure that the output peak performance is satisfied.

The rest of the paper is organized as follows: In Sect. 2, the dynamical model of the
system is defined and the purpose of the paper is stated. Section 3 gives the definitions
of stochastic stability and output peak performance. In Sect. 4, a sufficient condition
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expressed in terms of LMIs is derived for the design of the output peak controller for
the nonhomogeneous Markov system. In Sect. 5, a numerical example is provided to
illustrate the applicability of the results obtained, and finally, Sect. 6 concludes the
paper.

Notations. In the sequel, the notation Rn stands for an n-dimensional Euclidean
space, the transpose of the matrix A is denoted by A�, E{·} denotes the mathematical
statistical expectation of a stochastic process or vector, ln

2 [0,∞) stands for the space
of n-dimensional square summable vector-valued functions over [0,∞), a positive-
definite matrix is denoted by P > 0, I is the unit matrix with appropriate dimension,
and ∗ means the symmetric term in a symmetric matrix.

2 Problem Statement and Preliminaries

Let (M, F, P) be a probability space, where M , F , and P represent, respectively, the
sample space, the σ -algebra of events, and the probability measure defined on F . We
consider the following discrete-time MJS:

{
xk+1 = A(rk)xk + B1(rk)wk + B2(rk)uk

zk = C(rk)xk + D(rk)uk
(2.1)

where xk ∈ Rn is the state vector of the system, uk ∈ Rm is the input vector of the
system, zk ∈ R p is the controlled output vector of the system, and wk is the external
disturbance vector of the system. {rk, k ≥ 0} is a discrete-time Markov stochastic
process which takes values in a finite state set Γ = {1, 2, 3, . . . , σ }, and r0 represents
the initial mode, the transition probability matrix is defined as: Π(k) = {πi j (k)}, i ,
j ∈ Γ , πi j (k) = P(rk+1 = j |rk = i) is the transition probability from mode i at

time k to mode j at time k + 1, which satisfies πi j (k) ≥ 0 and
σ∑

j=1
πi j (k) = 1. For

given vertices Π s(k), s = 1, . . . , N , the time-varying transition matrix �(k) of the
nonhomogeneous Markov jump systems is constructed as:

Π(k) =
N∑

s=1

αs(k)Π s(k) (2.2)

where

0 ≤ αs(k) ≤ 1,

N∑
s=1

αs(k) = 1

Hence, the nonhomogeneous transition probability matrix of system (2.1) belongs to
a polytope described by its vertices. It is noted that if �(k) is a constant matrix, the
system becomes a homogeneous MJS. For brevity, when rk = i , i ∈ Γ , the matrices
A(rk), B1(rk), B2(rk), C(rk), D(rk), H(rk), and K (rk) are denoted as Ai , Bi1, Bi2,
Ci , Di , and Ki .
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To proceed further, we need some preliminaries.

Definition 2.1 For any initial mode r0, and a given initial state x0, the discrete-time
Markov jump system (2.1) (with wk = 0) is said to be stochastically stable if

lim
υ→∞ E{

υ∑
k=0

x�
k xk |x0, r0} < ∞ (2.3)

Lemma 2.1 Let M and N be positive definite symmetric matrices. Then,

M + M
� − N ≤ M N

−1
M

�

Proof Since N is a positive definite symmetric matrix, we have

(M − N )M
−1

(M − N )� ≥ 0

Subsequently, the following inequality is derived

M N
−1

M
� − M − M

� + N ≥ 0

This completes the proof.

Definition 2.2 The disturbance wk is said to be a unit-energy disturbance if the fol-
lowing condition is satisfied:

T∑
k=0

w�
k wk ≤ (2.4)1

3 Stochastic Stability and Output Peak Performance

In this section, the focuses are to discuss stochastic stability and output peak perfor-
mance of system (2.1).

Lemma 3.1 [1] Consider system (2.1) (uk = 0 and wk = 0). Suppose that there
exists a set of symmetric positive definite matrices Ps

i > 0, such that

	 = A�
i

⎛
⎝ σ∑

j=1

N∑
s=1

N∑
s=1

αs(k + 1)αs(k)π s
i j Ps

j

⎞
⎠ Ai −

N∑
s=1

αs(k)Ps
i < (3.1)0

Then, system (2.1) with nonhomogeneous TP defined by (2.2) is stochastically stable.

Theorem 3.1 Consider system (2.1) (uk = 0 and x0 = 0) with nonhomogeneous TP
defined by 2.2. Suppose that for a given γ > 0, there exist symmetric positive definite
matrices Ps

i > 0, ∀i ∈ Γ , such that
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�1 =

⎡
⎢⎢⎢⎣

A�
i

(
σ∑

j=1

N∑
s=1

αs(k + 1)π s
i j Ps

j

)
Ai − Ps

i A�
i Bi1

−∗ I + B�
i1

σ∑
j=1

π s
i j Ps

j Bi1

⎤
⎥⎥⎥⎦ < 0

(3.2)

�2 =
[−Ps

i C�
i−∗ γ 2 I

]
< 0 ∀i ∈ Γ (3.3)

Then, system (2.1) with unit-energy disturbance defined by (2.4) is stochastically stable
and a prescribed output peak performance index γ , i.e., sup E{‖z(T )‖} < γ , is
satisfied.

Proof Construct a potential Lyapunov function as

V (xk, rk = i, αk) = x�
k

N∑
s=1

αs(k)Ps
i xk (i ∈ Γ )

Then,

�V (xk, i, αk)

= E{V (xk+1, rk+1, αk+1)} − V (xk, rk, αk)

= x�
k+1

⎛
⎝ σ∑

j=1

N∑
s=1

N∑
q=1

αs(k)βq(k + 1)π s
i j Pq

j

⎞
⎠ xk+1 − x�

k

N∑
s=1

αs(k)Ps
i xk

= (Ai xk + Bi1wk)
�

⎛
⎝ σ∑

j=1

N∑
s=1

N∑
q=1

αs(k)βq(k + 1)π s
i j Pq

j

⎞
⎠ (Ai xk + Bi1wk)

−x�
k

N∑
s=1

αs(k)Ps
i xk

Clearly,

� = �V (xk, i, αk) − w�
k wk = ς�

k �1ςk

where ςk = [x�
k w�

k ]�, and �1 is defined in (4.12). Thus, under the assumption
wk = 0, if � < 0 and �V (xk, i, αk) < 0, it follows from Lemma 3.1 that

lim
υ→∞ E{

υ∑
k=0

x�
k xk |x0, r0} < ∞. The system is stochastically stable.

To establish the output peak performance for system (2.1), let us consider the
following performance index J = E{‖z�(T )z(T )‖}. If (4.12) holds, then � < 0, i.e.,

�V (xk, i, αk) − w�
k wk < (3.4)0
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under zero initial condition, (i.e., V (xk, rk, αk)|k=0 = 0). Taking sum on both sides
from 0 to T, we have

E[
T∑

k=0

�V (xk, rk, αk)] = E[V (xT , rT , αT )] − V (x0, r0, α0)

≤ E[V (xT , rT , αT )] <

T∑
k=0

w�
k wk ≤ (3.5)1

If (3.3) holds, then it follows from (3.5) that

E{‖z�(T )z(T )‖} = x�
k C

�
i Ci xk < γ 2x�

k

N∑
s=1

αs(k)Ps
i xk = γ 2V (xT , rT , αT ) < γ 2

(3.6)

which implies that

sup E{‖z(T )‖} < γ,∀T > (3.7)0

This means that system (2.1) is stochastically stable and a prescribed output peak
performance index γ is satisfied. This completes the proof.

4 Output Peak Controller Design

In order to suppress the effect of the disturbances, we will design a mode-dependent
state feedback controller for system (2.1) under unit-energy disturbance, such that the
peak amplitude of the output stays below a specified level.

Now, we are ready to present our main results as given below:

Theorem 4.1 Consider system (2.1) with initial condition x0 = 0 and nonhomoge-
neous TP defined by 2.2. Suppose that for a prescribed γ > 0, there exist a suitable
mode-dependent state feedback controller uk = Ki xk and symmetric positive definite
matrices Ps

i > 0, ∀i ∈ Γ , such that

�3 =

⎡
⎢⎢⎢⎣

(Ai +Bi2 Ki )
�

(
σ∑

j=1

N∑
s=1

αs(k+1)π s
i j Ps

j

)
(Ai +Bi2 Ki )−Ps

i (Ai +Bi2 Ki )
� Bi1

−∗ I +B�
i1

σ∑
j=1

π s
i j Ps

j Bi1

⎤
⎥⎥⎥⎦

< 0 (4.1)

�4 =
[−Ps

i (Ci + Di Ki )
�

−∗ γ 2 I

]
< 0 ∀i ∈ Γ (4.2)
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Then, system (2.1) under the unit-energy disturbance defined by (2.4) is stochastically
stable and the prescribed output peak performance index γ , i.e., sup E{‖z(T )‖} < γ ,
is satisfied.

Proof Consider the mode-dependent state feedback controller uk = Ki xk . Then,
system (2.1) can be rewritten as

{
xk+1 = (Ai + Bi2 Ki )xk + Bi1wk

zk = (Ci + Di Ki )xk
(4.3)

Construct a potential Lyapunov–Krasovskii function for system (2.1), expressed in
terms of symmetric positive definite matrices Ps

i , as given below:

V (xi , rk, αk) = x�
k

N∑
s=1

αs(k)Ps
i xk (i ∈ Γ )

Apply Theorem 3.1, where the feedback controller uk = Ki xk is used. Substituting
Ai and Ci by (Ai + Bi2 Ki ) and (Ci + Di Ki ), respectively, it follows that �3 < 0
and �4 < 0 will guarantee that system (4.8) is stochastically stable and a output peak
performance index γ is satisfied, where

�3 =

⎡
⎢⎢⎢⎣

(Ai +Bi2 Ki )
�

(
σ∑

j=1

N∑
s=1

αs(k+1)π s
i j Ps

j

)
(Ai +Bi2 Ki )−Ps

i (Ai +Bi2 Ki )
� Bi1

−∗ I +B�
i1

σ∑
j=1

π s
i j Ps

j Bi1

⎤
⎥⎥⎥⎦

< 0 (4.4)

�4 =
[−Ps

i (Ci + Di Ki )
�

−∗ γ 2 I

]
< 0 ∀i ∈ Γ (4.5)

This concludes the proof.

Remark 4.1 Theorem 4.1 provides a conceptional method for the design of a mode-
dependent state feedback controller under which system (4.8) is stochastically stable
and the output peak performance index γ is satisfied. Next, the results of Theorem 4.2
will be formulated in terms of LMIs.

Theorem 4.2 Controller design under prescribed output peak index
Consider the discrete-time MJS with nonhomogeneous TP defined by 2.2 with zero

initial condition x0 = 0 and unit-energy disturbance
∑T

k=0 w�
k wk ≤ 1. Suppose that

there exist positive definite symmetric matrices Gi , Qs
i , and Ri , such that
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�5 =

⎡
⎢⎢⎢⎢⎢⎣

Qs
i − (Gi )

� − Gi 0
√

π s
i1(Ai Gi +Bi2 Ri )

� . . .
√

π s
iσ (Ai Gi +Bi2 Ri )

�
−∗ I

√
π s

i1 B�
i1 . . .

√
π s

iσ B�
i1−∗∗ Qq

1 00

∗∗∗ . . . 0
−∗∗∗∗ Qq

σ

⎤
⎥⎥⎥⎥⎥⎦

< 0

(4.6)

�6 =
[

Qs
i − (Gi )

� − Gi (Ci Gi + Di Ri )
�

−∗ γ 2 I

]
< (4.7)0

Then, system (4.8) under the mode-dependent state feedback controller uk = Ki xk is
stochastically stable and the output peak performance index γ , i.e., sup{E ‖z(T )‖} ≤
γ , is satisfied, where the controller gains are given by Ki = Ri (Gi )

−1 and Qs
i =

(Ps
i )−1.

Proof Consider a mode-dependent state feedback controller uk = Ki xk . Then, system
(2.1) under such a feedback controller can be rewritten as

{
xk+1 = (Ai + Bi2 Ki )xk + Bi1wk

zk = (Ci + Di Ki )xk
(4.8)

By Schur complement Lemma, the two matrix inequalities involved in (4.4) and (4.5)
can be transformed equivalently to

�7 =

⎡
⎢⎢⎢⎢⎢⎣

−Ps
i 0

√
π s

i1(Ai + Bi2 Ki )
� . . .

√
π s

iσ (Ai + Bi2 Ki )
�

−∗ I
√

π s
i1 B�

i1 . . .
√

π s
iσ B�

i1−∗∗ Qq
1 00

∗∗∗ . . . 0
−∗∗∗∗ Qq

σ

⎤
⎥⎥⎥⎥⎥⎦

< 0 (4.9)

Note that �7 < 0 is equivalent to (Ĝs
i1)

��7Ĝs
i1 < 0, or equivalently

�8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(Gi )
� Ps

i Gi 0
√

π s
i1(Gi )

�(Ai +Bi2 Ki )
� . . .

√
π s

iσ (Gi )
�(Ai +Bi2 Ki )

�

−∗ I
√

π s
i1 B�

i1 . . .
√

π s
iσ B�

i1

−∗∗ Qq
1 00

∗∗∗ . . . 0
−∗∗∗∗ Qq

σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (4.10)
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where

Ĝs
i1 = diag

{
Gi I I . . . I

}

From Lemma 2.1, it follows that

(Gi )
� Ps

i Gi ≥ (Gi )
� − Qs

i + Gi

�5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qs
i − (Gi )

� − Gi 0
√

π s
i1(Ai Gi +Bi2 Ri )

� . . .
√

π s
iσ (Ai Gi +Bi2 Ri )

�

−∗ I
√

π s
i1 B�

i1 . . .
√

π s
iσ B�

i1

−∗∗ Qq
1 00

∗∗∗ . . . 0

−∗∗∗∗ Qq
σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (4.11)

Let Ri = Ki Gi . Then, it is easy to show that the condition �5 < 0 in (4.16) implies
�8 < 0. Similarly, �4 < 0 is equivalent to

�4 =
[−Ps

i (Ci + Di Ki )
�

−∗ γ 2 I

]
< 0 ∀i ∈ Γ (4.12)

or equivalently (Ĝs
i2)

��4Ĝs
i2 < 0, i.e.,

�9 =
[−(Gi )

� Ps
i Gi (Ci Gi + Di Ri )

�
−∗ γ 2 I

]
< 0 (4.13)

By Lemma 2.1 and Schur complement Lemma, it follows that �9 < 0 is guaranteed
by �6 < 0, where

Ĝs
i2 = diag

{
Gi I

}

This completes the proof.

Remark 4.2 By examining the set of the coupled matrix inequalities in Theorem 4.1,
we see that it is not easy to be solved directly. To overcome the difficulty, we introduce
slack variables Gi . In this way, it becomes a problem of finding a feasible solution to
a LMI.

The following corollary follows readily from Theorem 4.2.

Corollary 4.1 Controller design under optimal output peak index
Consider the discrete-time MJS (2.1) under unit-energy disturbance

∑T
k=0 w�

k wk ≤
1 with nonhomogeneous TP defined by 2.2 and zero initial condition x0 = 0. . Suppose
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that there exists a set of positive definite symmetric matrices Gi , Ri , Qs
i , such that the

following problem has a solution

min γ (4.14)

s.t.

�10 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qs
i − (Gi )

� − Gi 0
√

π s
i1(Ai + Bi2 Ri )

� . . .
√

π s
iσ (Ai Gi + Bi2 Ri )

�

−∗ I
√

π s
i1 B�

i1 . . .
√

π s
iσ B�

i1

−∗∗ Qq
1 00

∗∗∗ . . . 0

−∗∗∗∗ Qq
σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (4.15)

�11 =
[

Qs
i − (Gi )

� − Gi (Ci Gi + Di Ri )
�

−∗ γ 2 I

]
< (4.16)0

Then, system (2.1) under the mode-dependent state feedback controller uk = Ki xk

with Ki = Ri G
−1
i and Qs

i = (Ps
i )−1 is stochastically stable and the optimal (mini-

mum) output peak performance index γ , i.e., sup{E ‖z(T )‖} < γ , is satisfied.

Remark 4.3 Theorem 4.2 and Corollary 4.1 present, respectively, the methodologies
for mode-dependent controller design under the prescribed output peak index and
that under the optimal output peak index. When the state feedback gain matrix is not
dependent on the mode, it becomes a mode-independent feedback controller.

5 Illustrative Example

Consider the following nonhomogeneous MJS with two modes:

A1 =
[

0.5 −0.3
00 .7

]
, A2 =

[
0 −0.15

0. 19 .2

]

B11 =
[

0.5
0.9

]
, B12 =

[
0.2
0.6

]

B21 =
[

0.6
0.3

]
, B22 =

[
0.5
0.3

]

C1 = [1 0] , C2 = [0.2 0.5] , D1 = 0.5, D2 = 0.3

The nonhomogeneous transition probability matrices are defined as follows:

�1(k) =
[

0.2 0.8
0.35 0.65

]
, �2(k) =

[
0.65 0.35
0.4 0.6

]



2803

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x1

Mode−dependent case
Mode−independent case

Fig. 1 State trajectories x1

�3(k) =
[

0.6 0.4
0.3 0.7

]
, �4(k) =

[
0.5 0.5

0.25 0.75

]

The initial state is x0 = [0 0]� and the unit-energy disturbance is given by

wk :=
{

0.3sin(k), i f 0 ≤ k ≤ 5,

0, others,

By Theorem 4.2, we obtain the mode-dependent gain matrices K1 = [−1.6228
−0.1978] , K2 = [−0.4958 − 1.1693] and mode-independent gain matrices K =
[−1.0818 − 0.4531].

The state trajectories x1, x2 are shown in Figs. 1 and 2, and the output of the
system is shown in Fig. 3. We can see that the amplitude of the system output z under
the designed mode-dependent state feedback controller is less than the prescribed
output threshold value γ = 0.5 (the purple line), while the index γ = 0.5 under the
mode-independent state feedback controller is not satisfied (the red dot dash line).
This implies that the mode-dependent controller can better suppress the effect of
disturbance when compared with the mode-independent controller. Actually, we can
apply Corollary 4.1 to obtain the optimal (minimum) output peak performance index
under mode-dependent as well as mode-independent state feedback controller. The
details are presented in Table 1. The optimal (minimum) output peak performance
index under mode-independent state feedback controller is γ = 0.5757. Clearly, the
prescribed index γ = 0.5 under mode-independent state feedback is not satisfied.
This is because mode-independent controller does not adequately utilize the mode
transition information, and consequently the results obtained tend to be not as good
as that under a mode-dependent state feedback controller.



2804

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x2

Mode−dependent case
Mode−independent case

Fig. 2 State trajectories x2

0 5 10 15
0

0.2

0.4

t

ou
tp

ut
 z γ=0.5

Mode−dependent case
Mode−independent case

0 5 10 15
0

1

2

3

t

m
od

e

Fig. 3 Output of the system

Table 1 Optimal output peak
performance index with different
cases

Mode-independentMode-dependentCase

γmin 0.57570.1880

6 Conclusions

In this paper, the issue on the output peak controller design for nonhomogeneous
Markov jump system is addressed, where the nonhomogeneous transition probabil-
ity matrix is described as a polytope. By introducing appropriate slack variables, an
optimization problem is formulated where its constraints are expressed in terms of
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LMIs. The simulation results show the potential of the proposed techniques. The
results obtained appear to be extendable to nondeterministic switched systems. This
is a future research topic.
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