Skip to main content
Log in

Distributed State Estimation for Discrete-Time Nonlinear System with Unknown Inputs

  • Regular Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigated the problem of distributed estimation for a class of discrete-time nonlinear systems with unknown inputs in a sensor network. A modification scheme to the derivative-free versions of nonlinear robust two-stage Kalman filter (DNRTSKF) is first introduced based on recently developed cubature Kalman filter (CKF) technique. Afterward, a novel information filter is proposed by expressing the recursion in terms of the information matrix based upon DNRTSKF. In the end, distributed DNRTSKF is developed by applying a new information consensus filter to diffuse local statistics over the entire sensor network. In the implementation procedure, each sensor node only fuses the local observation instead of the global information and updates its local information state and matrix from its neighbors’ estimates using Average-Consensus Algorithm. Simulation results illustrate that the proposed distributed filter reveals the performance comparable to centralized DNRTSKF and better than distributed CKF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.D.O. Anderson, J.B. Moore, Optimal Filtering (Prentice-Hall, Englewood Cliffs, 1979)

    MATH  Google Scholar 

  2. I. Arasaratnam, S. Haykin, Cubature Kalman filters. IEEE Trans. Autom. Control 54(6), 1254–1269 (2009)

    Article  MathSciNet  Google Scholar 

  3. R. Carli, A. Chiuso, L. Schenato et al., Distributed Kalman filtering based on consensus strategies. IEEE J. Sel. Areas Commun. 26(4), 622–633 (2008)

    Article  Google Scholar 

  4. D.W. Casbeer, Decentralized estimation using information consensus filters with a multi-static UAV radar tracking system (ProQuest, 2009)

  5. D.W. Casbeer, R. Beard, Distributed information filtering using consensus filters, in ACC’09 IEEE American Control Conference, 2009 (Saint Louis, Missouri, 2009), pp. 1882–1887.

  6. H. Fang, R.A. de Callafon, J. Cortés, Simultaneous input and state estimation for nonlinear systems with applications to flow field estimation. Automatica 49(12), 2805–2812 (2013)

    Article  Google Scholar 

  7. S. Gillijns, B. De Moor, Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough. Automatica 43(5), 934–937 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. C.S. Hsieh, Extension of unbiased minimum-variance input and state estimation for systems with unknown inputs. Automatica 45(9), 2149–2153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. C.S. Hsieh, On the global optimality of unbiased minimum-variance state estimation for systems with unknown inputs. Automatica 46(4), 708–715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. C.S. Hsieh, State estimation for nonlinear systems with unknown inputs, in Proceedings of The 7th IEEE Conference on Industrial Electronics and Applications (Singapore, 2012), pp. 1533–1538

  11. C.S. Hsieh, D.C. Liaw, Traffic state estimation within unknown input filtering framework, in Proceedings of 2011 International Conference on Service and Interactive Robots (2011), pp. 25–30

  12. C.S. Hsieh, D.C. Liaw, Unknown Input Filtering for Nonlinear Systems and Its Application to Traffic State Estimation, in Proceedings of The 7th IEEE Conference on Industrial Electronics and Applications (Singapore, 2012), pp. 1847–1852

  13. S.J. Julier, J.K. Uhlmann, H.F. Durrant-Whyte, A new method for nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control. 45(3), 477–482 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. U.A. Khan, J.M.F. Moura, Distributing the Kalman filter for large scale systems. IEEE Trans. Signal Process. 56(10), 4919–4935 (2008)

    Article  MathSciNet  Google Scholar 

  15. D. Kingston, R. Beard, Discrete-time average-consensus under switching network topologies, in Proceedings of the American Control Conference (Minneapolis, Minnesota, 2006), pp. 3551–3556

  16. D.J. Lee, Nonlinear estimation and multiple sensor fusion using unscented information filtering. IEEE Signal Process. Lett. 15, 861–864 (2008)

    Article  Google Scholar 

  17. W.L. Li, Y.M. Jia, Distributed consensus filtering for discrete-time nonlinear systems with non-Gaussian noise. Signal Process. 92(10), 2464–2470 (2012)

    Article  Google Scholar 

  18. W.L. Li, Y.M. Jia, Consensus-based distributed multiple model UKF for jump Markov nonlinear systems. IEEE Trans. Autom. Control 57(1), 230–236 (2012)

    MathSciNet  Google Scholar 

  19. Y. Lu, L. Zhang, X. Mao, Distributed information consensus filters for simultaneous input and state estimation. Circuits Syst. Signal Process. 32(2), 1–12 (2013)

    MathSciNet  Google Scholar 

  20. Z. Luo, H. Fang, Y. Luo, Constrained state estimation for nonlinear systems with unknown Input. Circuits Syst. Signal Process. 32(5), 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  21. A.G.O. Mutambara, Decentralized Estimation and Control for Multisensor Systems (CRC Press, Boca Raton, 1998)

    MATH  Google Scholar 

  22. K. Pakki, B. Chandra, D.W. Gu et al., Cubature information filter and its applications, in IEEE American Control Conference (ACC) (California, San Francisco, 2011), pp. 3609–3614

  23. K. Pakki, B. Chandra, D.W. Gu et al., A square root cubature information filter. IEEE Sens. J. 13(2), 750–758 (2013)

    Article  Google Scholar 

  24. R.W. Ren, R. Beard, E. Atkins, Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27(2), 71–82 (2007)

    Article  Google Scholar 

  25. R.O. Saber, Distributed Kalman filter with embedded consensus filters, in Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference (2005), pp. 8179–8184

  26. R.O. Saber, Distributed Kalman filtering for sensor networks, in Proceedings of the 46th IEEE Conference on Decision and Control (2007), pp. 5492–5498

  27. R.O. Saber, R. Fax, R. Murray, Consensus and cooperation in networked multi-agent systems. Proc. IEEE. 95(1), 215–233 (2007)

    Article  Google Scholar 

  28. R.O. Saber, J. Shamma, Consensus filters for sensor networks and distributed sensor fusion, in Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference (2005), pp. 6698–6703

  29. G. Wen, Z. Duan, W. Yu et al., Consensus in multi-agent systems with communication constraints. Int. J. Robust Nonlinear Control 22(2), 170–182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Xiao, S. Boyd, S. Lall, A scheme for robust distributed sensor fusion based on average consensus, in Fourth International Symposium on IEEE Information Processing in Sensor Networks (2005), pp. 63–70

  31. W. Yu, G. Chen, Z. Wang, W. Yang, Distributed consensus filtering in sensor networks. IEEE Trans. Syst. Man Cybern. Part B 39(6), 1568–1577 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (51177137, 61134001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialin Ding.

Appendix

Appendix

As we know, DNRTSKF is the derivative-free implementation of NERTSF. It is possible to derivate the condition of unbiased estimate for \(\hat{\varvec{d}}_{k-1} \) from NERTSF and extend it to DNRTSKF.

According to NERTSF, a nonlinear system can be approximated in first-order Taylor series as

$$\begin{aligned} \varvec{x}_k&\approx \hat{\varvec{x}}_{k\left| {k-1} \right. } +\varvec{A}_{k-1} \tilde{\varvec{x}}_{k-1\left| {k-1} \right. } +\varvec{G}_{k-1} \varvec{d}_{k-1} +\varvec{\omega }_{k-1}\end{aligned}$$
(65)
$$\begin{aligned} \varvec{z}_k&\approx \hat{\varvec{z}}_{k\left| {k-1} \right. } +\varvec{C}_k \tilde{\varvec{x}}_{k\left| {k-1} \right. } +\varvec{\nu } _k, \end{aligned}$$
(66)

where \(\tilde{\varvec{x}}_{k-1\left| {k-1} \right. } \approx \varvec{x}_{k-1} -\hat{\varvec{x}}_{k-1\left| {k-1} \right. } \), \(\tilde{\varvec{x}}_{k\left| {k-1} \right. } \approx \varvec{x}_k -\hat{\varvec{x}}_{k\left| {k-1} \right. } \), and

$$\begin{aligned} \varvec{A}_k&= \frac{\partial f_k (\varvec{x}_k ,\varvec{d}_k ,\varvec{u}_k )}{\partial \varvec{x}_k }\left| {{\varvec{x}_k =\hat{\varvec{x}}_{k\left| k \right. } ,\varvec{d}_k =0} } \right. \\ \varvec{G}_k&= \frac{\partial f_k (\varvec{x}_k ,\varvec{d}_k ,\varvec{u}_k )}{\partial \varvec{d}_k }\left| {{\varvec{x}_k =\hat{\varvec{x}}_{k\left| k \right. } ,\varvec{d}_k =0} } \right. \\ \varvec{C}_k&= \frac{\partial h_k (\varvec{x}_k ,\varvec{u}_k )}{\partial \varvec{x}_k }\left| {{\varvec{x}_k =\hat{\varvec{x}}_{k\left| {k-1} \right. } } }. \right. \end{aligned}$$

Substituting (66) in (24),

$$\begin{aligned} \hat{\varvec{d}}_{k-1} \approx \varvec{S}_k^*\varvec{C}_k \tilde{\varvec{x}}_{k\left| {k-1} \right. } +\varvec{S}_{k}^{*} \varvec{\nu } _k. \end{aligned}$$
(67)

Employing (65), we have

$$\begin{aligned} \begin{array}{lll} \hat{\varvec{d}}_{k-1} &{}\approx &{} \varvec{S}_k^*\varvec{C}_k (\varvec{A}_{k-1} \tilde{\varvec{x}}_{k-1\left| {k-1} \right. } +\varvec{\omega } _{k-1} )+\varvec{S}_k^*\varvec{C}_k \varvec{G}_{k-1} \varvec{d}_{k-1} +\varvec{S}_k^*\varvec{\nu }_k \\ &{}=&{}\varvec{S}_k^*\varvec{C}_k \varvec{A}_{k-1} \tilde{\varvec{x}}_{k-1\left| {k-1} \right. } +\varvec{S}_k^*\varvec{C}_k \varvec{G}_{k-1} \varvec{d}_{k-1} +\varvec{S}_k^*\varvec{C}_k \varvec{\omega }_{k-1} +\varvec{S}_k^*\varvec{\nu }_k. \\ \end{array} \end{aligned}$$
(68)

Let \(\hat{\varvec{x}}_{k-1\left| {k-1} \right. } \) be unbiased, then \(E[\tilde{\varvec{x}}_{k-1\left| {k-1} \right. } ]=0\) and it follows from (68) that

$$\begin{aligned} \begin{array}{lll} E[\hat{\varvec{d}}_{k-1} -\varvec{d}_{k-1} ]&{}\approx &{} E[\varvec{S}_k^*\varvec{C}_k \varvec{A}_{k-1} \tilde{\varvec{x}}_{k-1\left| {k-1} \right. } +(\varvec{S}_k^*\varvec{C}_k \varvec{G}_{k-1} -\varvec{I}_p )\varvec{d}_{k-1}\\ &{}&{}+\varvec{S}_k^*\varvec{C}_k \varvec{\omega } _{k-1} +\varvec{S}_k^*\varvec{\nu } _k ] =(\varvec{S}_k^*\varvec{C}_k \varvec{G}_{k-1} -I_p )E[\varvec{d}_{k-1} ]. \\ \end{array} \end{aligned}$$
(69)

It should be noted that \(\hat{\varvec{d}}_{k-1} \) is an approximately unbiased estimated of \(\varvec{d}_{k-1} \) if and only if \(\varvec{S}_k^*\varvec{C}_k \varvec{G}_{k-1} =\varvec{I}_p \).

Thus, in DNRTSKF, for the condition of unbiased estimate \(\hat{\varvec{d}}_{k-1}\) to hold, it must satisfy the constraint

$$\begin{aligned} \varvec{S}_k^*\tilde{\varvec{C}}_k \varvec{G}_{k-1} =\varvec{I}_p. \end{aligned}$$
(70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Xiao, J., Zhang, Y. et al. Distributed State Estimation for Discrete-Time Nonlinear System with Unknown Inputs. Circuits Syst Signal Process 33, 3421–3441 (2014). https://doi.org/10.1007/s00034-014-9812-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9812-7

Keywords

Navigation