Skip to main content
Log in

A Robust Demodulator for OQPSK–DSSS System

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

IEEE802.15.4 standard has quickly become a benchmark in the era of Internet of things. The mandatory mode of 2.4 GHz physical layer of IEEE802.15.4 standard employs offset quadrature phase shift keying (OQPSK) modulation with direct sequence spread spectrum (DSSS). The performance of conventional differential demodulator is not satisfactory. The coherent demodulator is vulnerable to initial phase mismatch or frequency offset. In this paper, we propose a new non-coherent demodulator for the OQPSK–DSSS system. The proposed demodulator is robust against initial phase mismatch and frequency offset. At \(-\)1.3 dB SNR in additive white Gaussian noise channel, the proposed demodulator achieves the target sensitivity at 1 % packet error rate. Simulation results demonstrate the effectiveness and robustness of the proposed demodulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Chen, H. Huang, M. Hsieh, Design of an improved CMOS phase/frequency detector. Circuits Syst. Signal Process. 25(4), 539–557 (2006)

    Article  MATH  Google Scholar 

  2. S. Fang, S. Berber, A. Swain, S. Rehman, A study on DSSS transceivers using OQPSK modulation by IEEE 802.15.4 in AWGN and flat Rayleigh fading channels, in Proceedings of IEEE Region 10 Conference on TENCON, pp. 1347–1351 (2010)

  3. A. Ghazi, J. Boutellier, J. Hannuksela, Low-complexity SDR implementation of IEEE 802.15.4 (ZigBee) baseband transceiver on application specific processor, in Proceedings of Wireless Innovation Forum Conference on Wireless Communications Technologies and Software Defined Radio (2013)

  4. IEEE Std 802.15.4-2006, IEEE Standard for Information Technology Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs) (2006)

  5. D. Kreiser, S. Olonbayar, Improvements of IEEE 802.15. 4a for non-coherent energy detection receiver Signals, in Proceedings of IEEE International Symposium on Systems, and Electronics, pp. 1–5 (2012)

  6. S. Kay, A fast and accurate single frequency estimator. IEEE Trans. Acoust. Speech Signal Process. 37(12), 1987–1990 (1989)

    Article  Google Scholar 

  7. J. Lee, Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks. IEEE Trans. Consum. Electron. 52(3), 742–749 (2006)

    Article  Google Scholar 

  8. S. Lanzisera, K. Pister, Theoretical and practical limits to sensitivity in IEEE 802.15.4 receivers, in Proceedings of IEEE International Conference on Electronics, Circuits and Systems (ICECS’2007), pp. 1344–1347 (2007)

  9. R. McKilliam, B. Quinn, I. Clarkson, B. Moran, Frequency estimation by phase unwrapping. IEEE Trans. Signal Process. 58(6), 2953–2963 (2010)

    Article  MathSciNet  Google Scholar 

  10. H. Meyr, M. Moeneclaey, Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing (Wiley, New York, 1998), pp. 455–504

    Google Scholar 

  11. F. Olver, D. Lozier, NIST Handbook of Mathematical Functions, Chapter 10. (Cambridge University Press, Cambridge, 2010)

  12. D. Park, C. Park, K. Lee, Simple design of detector in the presence of frequency offset for IEEE 802.15.4 LR-WPANs. IEEE Trans. Circuits Syst. 56(4), 330–333 (2009)

    Article  Google Scholar 

  13. S. Park, D. Park, Low-complexity frequency-offset insensitive detection for orthogonal modulation. Electron. Lett. 41, 1226–1228 (2005)

    Article  Google Scholar 

  14. D. Rife, R. Boorstyn, Single-tone parameter estimation from discrete-time observations. IEEE Trans. Inf. Theory 20(5), 591–598 (1974)

    Article  MATH  Google Scholar 

  15. C. Wang, J. Huang, A low-Power 2.45 GHz ZigBee transceiver for wearable personal medical devices in WPAN, in Proc. IEEE International Conference on Consumer Electronics (ICCE’2007), pp. 1–2 (2007)

  16. C. Wang, G. Sung, J. Huang, L. Lee, C. Li, A low-power 2.45 GHz WPAN modulator/demodulator. Microelectron. J. 41(2), 150–154 (2010)

    Article  Google Scholar 

  17. Y. Yu, X. Meng, S. Xiao, C. Ma, T. Ye, A new low-cost demodulator for 2.4 GHz ZigBee receivers. J. Electron. (China) 26(2), 252–257 (2009)

  18. S. Yin, J. Cui, A. Luo, L. Liu, S. Wei, A high efficient baseband transceiver for IEEE 802.15.4 LR-WPAN systems, in Proceedings IEEE 9th International Conference on ASIC, pp. 224–227 (2011)

Download references

Acknowledgments

This work was supported in part by the 100 Talents Program of Chinese Academy of Sciences, the National Natural Science Foundation of China (No. 61231009), and the Innovation Foundation of Shanghai Science and Technology (No. 11DZ1500201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Qian, H., Kang, K. et al. A Robust Demodulator for OQPSK–DSSS System. Circuits Syst Signal Process 34, 231–247 (2015). https://doi.org/10.1007/s00034-014-9844-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9844-z

Keywords

Navigation