Skip to main content
Log in

Programmable Implementation of Diamond-Shaped Type-2 Membership Function in CMOS Technology

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, circuit implementation of diamond-shaped type-2 membership function in CMOS technology is presented. Designing of mixed analog/digital circuits provides a flexible configuration as well as the highly accurate performance, where analog circuits are employed to realize required functions, while the programmable units implemented using digital circuits. The current-mode approach is employed owing to the simple circuitry and intuitive configuration to design the circuits. The programmability of the circuit in terms of slopes, upper, and lower modal points enables the expert of the system to create other shapes of type-2 membership functions including rectangular, rhombus, triangular, and trapezoidal. For a particular set of programming parameters of diamond-shaped type-2 membership function, post layout simulation results of the proposed circuit using HSPICE and level 49 parameters (BSIM3v3) in 0.18 \(\mu \)m technology, demonstrate an average power consumption of 0.688 mW, maximum propagation delay of 8.7 ns and a relative error as low as \(\pm \)1 %. Furthermore, Monte Carlo analysis is carried out to ensure the robustness of the circuit performance against the process variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Aliasghary, I. Eksin, M. Güzelkaya, T. Kumbasar, Design of an Interval Type-2 Fuzzy Logic Controller Based on Conventional PI Controller, Control & Automation (MED), 20th Mediterranean Conference on, 627–632, (2012).

  2. M. Aliasghary, I. Eksin, M. Güzelkaya, T. Kumbasar, A design methodology and analysis for interval type-2 fuzzy PI/PD controllers. Int. J. Innov. Comput. Inf. Control 9(10), 4215–4230 (2013)

    Google Scholar 

  3. R. Amirkhanzadeh, A. Khoei, Kh Hadidi, A mixed-signal current-mode fuzzy logic controller. Int. J. Electron. Commun. 59(3), 177–184 (2005)

    Article  MathSciNet  Google Scholar 

  4. J.N. Babanezhad, R. Gregorian, A programmable gain/loss circuit. IEEE J. Solid-State Circuits 22(6), 1082–1090 (1987)

    Article  Google Scholar 

  5. K. Basterretxea, J.M. Tarela, I. Del Campo, Digital Gaussian membership function circuit for neuro-fuzzy hardware. Electron. Lett. 42(1), 44–46 (2006)

    Article  Google Scholar 

  6. C. Byung-In, R. Frank, Chung-Hoon, Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf. Sci. 179(13), 2102–2122 (2009)

    Article  MATH  Google Scholar 

  7. U. Cenk, G. Müjde, E. Ibrahim, Granular type-2 membership functions: a new approach to formation of footprint of uncertainty in type-2 fuzzy sets. J. Appl. Soft Comput. 13(8), 3713–3728 (2013)

    Article  Google Scholar 

  8. C. Chuen-Yau, H. Yuan-Ta, L. Bin-Da, Circuit implementation of linguistic-hedge fuzzy logic controller in current-mode approach. IEEE Trans. Fuzzy Syst. 11(5), 624–646 (2003)

    Article  Google Scholar 

  9. B.Y. Darani, A. Khoei, Kh. Hadidi, A highly accurate programmable CMOS fuzzifier circuit, in Proceedings of 2010 International Conference on Electronic Device, System and Applications., Kuala Lumpur, Malaysia (2010).

  10. D. Fernández, M. Verleysen, P. Thissen, J.L. Voz, A CMOS analog circuit for Gaussian functions. IEEE Trans. Circuits Syst. 43(1), 70–74 (1996)

    Article  Google Scholar 

  11. I.M. Filanovsky, A. Allam, Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits. IEEE Trans. Circuits Syst. I 48(7), 876–884 (2001)

    Article  Google Scholar 

  12. K. Gheysari, S. Mashoufi, Implementation of CMOS flexible fuzzy logic controller chip in current mode. Fuzzy Sets Syst. 185(1), 125–137 (2011)

    Article  MathSciNet  Google Scholar 

  13. H. Hagras, Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)

    Article  Google Scholar 

  14. J.L. Huertas, S. Sanchez-Solano, I. Baturone, A. Barriga, Integrated circuit implementation of fuzzy controllers. IEEE J. Solid-State Circuits 31(7), 1051–1058 (1996)

    Article  Google Scholar 

  15. M. Kachare, J. Ramirez-Angulo, R.G. Carvajal, A.J. Lopez-Martin, New low-voltage fully programmable CMOS triangular/trapezoidal function Generator circuit. IEEE Trans. Circuits Syst. I 52(10), 2033–2042 (2005)

    Article  Google Scholar 

  16. A. Khalilzadegan, A. Khoei, Kh Hadidi, Circuit implementation of a fully programmable and continuously slope tunable triangular/trapezoidal membership function generator. Analog Integr. Circuits Signal Process. 71(3), 561–570 (2012)

    Article  Google Scholar 

  17. M.A. Khanesar, M. Teshnehlab, E. Kayacan, O. Kaynak, A novel type-2 fuzzy membership function: application to the prediction of noisy data, Computational Intelligence for Measurement Systems and Applications (CIMSA), 2010 IEEE International Conference on, 128–133, (2010).

  18. M. Khanesar, E. Kayacan, M. Teshnehlab, O. Kaynak, Analysis of the noise reduction property of type-2 fuzzy logic systems using a novel type-2 membership function. IEEE Trans. Syst. Man Cybern. B Cybern. 41(5), 1395–1406 (2011)

    Article  Google Scholar 

  19. L. Kuo-Jen, C. Chih-Jen, C. Shun-Feng, S. Hsin-Cheng, CMOS current-mode implementation of fractional-power functions. Circuits Syst. Signal Process. 31(1), 61–75 (2012)

    Article  MATH  Google Scholar 

  20. A. Lotfi, A.C. Tsoi, Importance of membership functions: a comparative study on different learning methods for fuzzy inference systems, Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence, Proceedings of the Third IEEE Conference on 3, 1791–1796 (1994)

  21. J.M. Mendel, Type-2 fuzzy sets and systems: an overview. IEEE Comput. Intell. Mag. 2(1), 20–29 (2007)

    Article  MathSciNet  Google Scholar 

  22. A. Mesri, A. Khoei, Kh. Hadidi, Design of a current-mode fully programmable Interval Type-2 fuzzifier for general-purpose applications, Electrical Engineering (ICEE), 2013 21st Iranian Conference on, 14–16 (2013).

  23. J.M.A. Miguel, C.A. de La Cruz-Blas, A.J. Lopez-Martin, Fully differential current-mode CMOS triode translinear multiplier. IEEE Trans. Circuits Syst. II Express Briefs 58(1), 21–25 (2011)

    Article  Google Scholar 

  24. S. Moshfe, P. Hoseini, A. Khoei, Kh. Hadidi, A fully programmable analog CMOS rational-powered membership function generator with continuously adjustable high precision parameters. Circuits Syst. Signal Process. 33(5), 1337–1352 (2014)

  25. A. Naderi Saatlo, S. Ozoguz, CMOS high-precision loser-take-all circuit. IEEJ Trans. Electr. Electron. Eng., vol. 9, no. 6, (2014).

  26. A. Naderi Saatlo, A. Khoei, Kh Hadidi, Circuit implementation of high-resolution rational-powered membership functions in standard CMOS technology. Int. J. Analog Integr. Circuits Signal Process. 65(2), 217–223 (2010)

    Article  Google Scholar 

  27. A. Naderi, A. Khoei, Kh Hadidi, H. Ghasemzdeh, A new high speed and low power four-quadrant CMOS analog multiplier in current mode. Int. J. Electron. Commun. 63(9), 769–775 (2009)

    Article  Google Scholar 

  28. P. Prommee, K. Angkeaw, M. Somdunyakanok, K. Dejhan, CMOS-based near zero-offset multiple inputs max-min circuits and its applications. Analog Integr. Circuits Signal Processing. 61(1), 93–105 (2009)

    Article  Google Scholar 

  29. P. Prommee, K. Chattrakun, CMOS WTA maximum and minimum circuits with their applications to analog switch and rectifiers. Microelectron. J. 42(1), 52–62 (2011)

    Article  Google Scholar 

  30. P.M.S. Rocha Rizol, L. Mesquita, O. Saotome, G. Botura, Hardware implementation of type-2 programmable fuzzifier, Circuits and Systems (LASCAS), 2011 IEEE Second Latin American Symposium on, 23–25, (2011).

  31. A.N. Taher, A. Soliman, C.M.O.S. Fully Programmable, traingular and trapezoidal function generators, Microelectronics, ICM 2008. International Conference on 64–67(2008), (2008)

  32. D. Türkay, B. Adil, A. Koray, D. Alptekin, T. Burhan, Industrial applications of type-2 fuzzy sets and systems: a concise review. J. Comput. Ind. 62(2), 125–137 (2011)

    Article  Google Scholar 

  33. S. Weiwei, L. Yinchao, S. Huafang, L. Junyin, A novel analog circuit design and test of a triangular membership function. Electron. Signal Process. 97, 727–733 (2011)

    Article  Google Scholar 

  34. T. Xiaobing, L. Chao, Z. Tao, A four-quadrant analog multiplier under a single power supply voltage. Analog Integr. Circuits Signals Process. 71(3), 525–530 (2012)

    Article  Google Scholar 

  35. H. Yazdanjouei, H. Feizy, A. Khoei, Kh. Hadidi, Design of a fully programmable analog interval type-2 triangular/trapezoidal fuzzifier, Mixed Design of Integrated Circuits and Systems (MIXDES), 2012 Proceedings of the 19th International Conference, 243–248, (2012).

  36. B. Yong, V. Wei-Chou, L. Shen, C. Xiaohu, Sustainable transportation systems: planning, design, build, manage, and maintenance, in Proceedings of the Ninth Asia Pacific Transportation Development Conference, 2012 (2012), pp. 679–680

Download references

Acknowledgments

The authors would like to thank Dr. Mortaza Aliasghary and Dr. Tohid Ghanbari Ghazijahani for their valuable remarks and fruitful discussions in improving the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Naderi Saatlo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saatlo, A.N., Ozoguz, S. Programmable Implementation of Diamond-Shaped Type-2 Membership Function in CMOS Technology. Circuits Syst Signal Process 34, 321–340 (2015). https://doi.org/10.1007/s00034-014-9846-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9846-x

Keywords

Navigation