Skip to main content
Log in

Blind Identification of Underdetermined Mixtures with Complex Sources Using the Generalized Generating Function

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The generalized generating function (GGF), which can exploit the statistical information carried on complex-valued signals efficiently by treating its real and imaginary parts as a whole and offer an elegant algebraic structure, has been proposed by authors for blind identification of mixtures. In this paper, we extend the GGF-based method to be able to deal with the challenging underdetermined mixtures with complex-valued sources. A new algorithm named ALSGGF, in which the mixing matrix is estimated by decomposing the tensor constructed from the higher conjugate derivative of the second GGF of the observations with alternating least squares algorithm, is proposed. Furthermore, we show that the conjugate derivatives of different orders of the second GGF can be used jointly in a simple way to improve the performance. Simulation experiments validate the superiority of the proposed ALSGGF algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Aissa-EI-Bey, N. Linh-Trung, K. Abed-Meraim, A. Belouchrani, Y. Grenier, Underdetermined blind separation of nondisjoint sources in the time–frequency domain. IEEE Trans. Signal Process. 55(3), 897–907 (2007)

    Article  MathSciNet  Google Scholar 

  2. Y. Chen, D. Han, L. Qi, New ALS methods with extrapolating search directions and optimal step size for complex-valued tensor decompositions. IEEE Trans. Signal Process. 59(12), 5888–5898 (2011)

    Article  MathSciNet  Google Scholar 

  3. P. Comon, M. Rajih, Blind identification of underdetermined mixtures based on the characteristic function. Signal Process. 86(9), 2271–2281 (2006)

    Article  MATH  Google Scholar 

  4. P. Comon, X. Luciani, A.L.F. de Almeida, Tensor decompositions, alternating least squares and other tales. J. Chemom. 23, 393–405 (2009)

    Article  Google Scholar 

  5. A.L.F. de Almeida, X. Luciani, A. Stegeman, P. Comon, CONDFAC decomposition approach to blind identification of underdetermined mixtures based on generating function derivatives. IEEE Trans. Signal Process. 60(11), 5698–5713 (2012)

    Article  MathSciNet  Google Scholar 

  6. F. Gu, H. Zhang, D. Zhu, Blind separation of complex sources using generalized generating function. IEEE Signal Process. Lett. 20(1), 71–74 (2013)

    Article  Google Scholar 

  7. F. Gu, H. Zhang, W. Wang, D. Zhu, Generalized generating function with tucker decomposition and alternating least squares for underdetermined blind identification. EURASIP J. Adv. Signal Process. (2013). doi:10.1186/1687-6180-2013-124

  8. A. Karfoul, L. Albera, G. Birot, Blind underdetermined mixture identification by joint canonical decomposition of HO cumulants. IEEE Trans. Signal Process. 58(2), 638–649 (2010)

    Article  MathSciNet  Google Scholar 

  9. J.B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18, 95–138 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. L.D. Lathauwer, J. Castaing, Blind identification of underdetermined mixtures by simultaneous matrix diagonalization. IEEE Trans. Signal Process. 56(3), 1096–1105 (2008)

    Article  MathSciNet  Google Scholar 

  11. L.D. Lathauwer, B.D. Moor, J. Vandewalle, On the best rank-1 and rank-(\(R_{1}, R_{2}, \ldots, R_{N})\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. L.D. Lathauwer, J. Castaing, J.F. Cardoso, Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 55(6), 2965–2973 (2007)

    Article  MathSciNet  Google Scholar 

  13. X. Luciani, A.L.F. de Almeida, P. Comon, Blind identification of underdetermined mixtures based on the characteristic function: the complex case. IEEE Trans. Signal Process. 59(2), 540–553 (2011)

    Article  MathSciNet  Google Scholar 

  14. D. Nion, L.D. Lathauwer, An enhanced line search scheme for complex-valued tensor decompositions: application in DS-CDMA. Signal Process. 88(3), 749–755 (2008)

    Article  MATH  Google Scholar 

  15. M. Rajih, P. Comon, Alternating least squares identification of underdetermined mixtures based on the characteristic function, in Proceedings of ICASSP’06, Toulouse, France, 2006, pp. III-117/III-120

  16. A. Slapak, A. Yeredor, Charrelation and charm: generic statistics incorporating higher-order information. IEEE Trans. Signal Process. 60(10), 5089–5106 (2012)

    Article  MathSciNet  Google Scholar 

  17. N.D. Sidiropoulos, R. Bro, On the uniqueness of multilinear decomposition of N-way arrays. J. Chemom. 14, 229–239 (2000)

    Article  Google Scholar 

  18. L. Sorber, M.V. Barel, L.D. Lathauwer, Optimization-based algorithms for tensor decomposition: canonical polyadic decomposition, decomposition in rank-(\(L_{r}\), \(L_{r}\), 1) terms, and a new generalization. SIAM J. Optim. 23(2), 695–720 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Xie, L. Yang, J. Yang, G. Zhou, Y. Xiang, Time–frequency approach to underdetermined blind source separation. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 306–316 (2012)

    Article  Google Scholar 

  20. A. Yeredor, Blind source separation via the second characteristic function. Signal Process. 80(5), 897–902 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their careful reading and helpful remarks, who have contributed to improve the clarity of the paper. This work is supported in part by the Natural Science Foundation of China under Grant 61001106, the National Program on Key Basic Research Project of China under Grant 2009CB320400, and the Major Projects of the National Natural Science Foundation of China under Grant 91338105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanglin Gu.

Appendix

Appendix

In this Appendix, we show the computational details of core equation in (8).

First, the differentiation of (8) with respect to \(u_{q_1 }^*\) gives

$$\begin{aligned} \frac{{\partial \Phi _{x} ({\mathbf {u}})}}{{\partial u_{{q_{1} }}^{*} }}&= \sum \nolimits _{{p = 1}}^{P} {\frac{{\partial \left( {\varphi _{p} (\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } )} \right) }}{{\partial \left( {\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } } \right) ^{*} }}\frac{{\partial \left( {\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } } \right) ^{*} }}{{\partial u_{{q_{1} }}^{*} }}} \nonumber \\&= \sum \nolimits _{{p = 1}}^{P} {A_{{q_{1} p}} \frac{{\partial \left( {\varphi _{p} (\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } )} \right) }}{{\partial \left( {\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } } \right) ^{*} }}} \end{aligned}$$
(19)

Similarly, the differentiation of (8) with respect to (\(u_{q_1 }^*,u_{q_2 }^*,\ldots ,u_{q_K }^*)\) gives

$$\begin{aligned} \frac{{\partial ^{K} \Phi _{x} ({\mathbf {u}})}}{{\partial u_{{q_{1} }}^{*} \partial u_{{q_{2} }}^{*} \cdots \partial u_{{q_{K} }}^{*} }} \!&= \!\sum \nolimits _{{p = 1}}^{P} {A_{{q_{1} p}} \cdots A_{{q_{{K - 1}} p}} \frac{{\partial ^{K} \left( {\varphi _{p} (\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } )} \right) }}{{\partial \left( {\left( {\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } } \right) ^{*} } \right) ^{K} }}\frac{{\partial \left( {\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } } \right) ^{*} }}{{\partial u_{{q_{K} }}^{*} }}} \nonumber \\&= \sum \nolimits _{{p = 1}}^{P} {A_{{q_{1} p}} \cdots A_{{q_{K} p}} \frac{{\partial ^{K} \left( {\varphi _{p} (\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } )} \right) }}{{\partial \left( {\left( {\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } } \right) ^{*} } \right) ^{K} }}} \end{aligned}$$
(20)

Defining \( G_{p} = \partial ^{K} \left( {\varphi _{p} (\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } )} \right) /\partial \left( {\left( {\sum \nolimits _{q} {A_{{qp}}^{*} u_{q} } } \right) ^{*} } \right) ^{K} \), we can rewrite (20) in a more compact form as in (9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, F., Zhang, H., Wang, S. et al. Blind Identification of Underdetermined Mixtures with Complex Sources Using the Generalized Generating Function. Circuits Syst Signal Process 34, 681–693 (2015). https://doi.org/10.1007/s00034-014-9858-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9858-6

Keywords

Navigation