Skip to main content
Log in

Effect of Multiscale PCA De-noising in ECG Beat Classification for Diagnosis of Cardiovascular Diseases

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Current trends in clinical applications demand automation in electrocardiogram (ECG) signal processing and heart beat classification. This paper examines the design of an effective recognition method to diagnose heart diseases. The proposed method consists of three main modules: de-noising module, feature extraction module, and classifier module. In the de-noising module, multiscale principal component analysis (MSPCA) is used for noise reduction of the ECG signals. In the feature extraction module, autoregressive (AR) modeling is used for extracting features. In the classifier module, different classifiers are examined such as simple logistic, k-nearest neighbor, multilayer perceptron, radial basis function networks, and support vector machines. Different experiments are carried out using the MIT-BIH arrhythmia database to classify different ECG heart beats and the performance of the proposed method is evaluated in terms of several standard metrics. The experimental results show that the proposed method is able to reduce noise from the noisy ECG signals more accurately in comparison to previous methods. The numerical results indicated that the proposed algorithm achieved 99.93 % of the classification accuracy using MSPCA de-noising and AR modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. N. Acır, A support vector machine classifier algorithm based on a perturbation method and its application to ECG beat recognition systems. Expert Syst. Appl. 31, 150–158 (2006)

    Article  Google Scholar 

  2. P.M. Agante, J.P. Marques de Sa, ECG noise filtering using wavelets with soft-thresholding methods. Comput. Cardiol. 26, 535–538 (1999)

    Google Scholar 

  3. M. Arif, M. U. Akram, and F. A. Afsar. Arrhythmia beat classification using pruned fuzzy k-nearest neighbor classifier soft computing and pattern recognition, in SOCPAR ’09, International Conference, 2009, pp. 37–42

  4. M. Arif, M.U. Akram, F.A.A. Minhas, Pruned fuzzy K-nearest neighbor classifier for beat classification. J. Biomed. Sci. Eng. 3(4), 380–389 (2010)

  5. B.M. Asl, S.K. Setarehdan, M. Mohebbi, Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 44, 51–64 (2008)

    Article  Google Scholar 

  6. B.R. Bakshi, Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 44(7), 1596–1610 (1998)

    Article  Google Scholar 

  7. R. Besrour, Z. Lachiri, and N. Ellouze. ECG beat classifier using support vector machine. in Proceedings of the Third International Conference on Information and Communication Technologies: From Theory to Applications, ICTTA, 2008, pp. 1–5

  8. B. E. Boser and I. M. Guyon. A training algorithm for optimal margin classifiers. in Fifth annual workshop on computational learning theory, Pittsburgh: ACM, 1992

  9. P. de Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)

    Article  Google Scholar 

  10. I. Christov, I. Jekova, G. Bortolan, Premature ventricular contraction classification by the Kth nearest neighbors rule. Physiol. Meas. 26, 123–130 (2005)

    Article  Google Scholar 

  11. G.D. Clifford, F. Azuaje, P.E. McSharry, Advanced Methods and Tools for ECG Data Analysis (Artech House, Norwood, 2006)

    Google Scholar 

  12. D. Donoho, I. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90, 1200–1223 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. K.L. Du, M.N.S. Swamy, Neural Networks in a Softcomputing Framework (Springer, London, 2006)

    MATH  Google Scholar 

  14. S. Dutta, A. Chatterjee, S. Munshi, Correlation technique and least square support vector machine combine for frequency domain based ECG beat classification. Med. Eng. Phys. 32, 1161–1169 (2010)

    Article  Google Scholar 

  15. M. Faezipour et al., A patient-adaptive profiling scheme for ECG beat classification. IEEE Trans. Inf. Technol. Biomed. 14(5), 1153–1165 (2010)

    Article  Google Scholar 

  16. M. Faezipour, T. M. Tiwari, A. Saeed, M. Nourani, and L. S. Tamil. Wavelet-based denoising and beat detection of ECG signal. in IEEE/NIH Life Science Systems and Applications Workshop (LiSSA 2009), 2009

  17. A.H. Fielding, Cluster and Classification Techniques for the Biosciences (Cambridge University Press, The Edinburgh Building, Cambridge, 2007)

    Google Scholar 

  18. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer, New York, 2009)

    Book  Google Scholar 

  19. E. Gokgoz, A. Subasi, Effect of multiscale PCA de-noising on EMG signal classification for diagnosis of neuromuscular disorders. J. Med. Syst. 38(4), 1–10 (2014)

    Article  Google Scholar 

  20. H. Gothwal, S. Kedawat, R. Kumar, Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network. Biomed. Sci. Eng. 4, 289–296 (2011)

    Article  Google Scholar 

  21. S. Goto, M. Nakamura, K. Uosaki, On-line spectral estimation of nonstationary time series based on AR model parameter estimation and order selection with a forgetting factor. IEEE Trans. Signal Process. 43, 1519–1522 (1995)

    Article  Google Scholar 

  22. H.V. Huikuri, A. Castellanos, R.J. Myerburg, Sudden death due to cardiac arrhythmias. N. Engl. J. Med. 345(20), 1473–1482 (2001)

    Article  Google Scholar 

  23. I. Jekova, G. Bortolan, I. Christov, Assessment and comparison of different methods for heartbeat classification. Med. Eng. Phys. 30, 248–257 (2008)

    Article  Google Scholar 

  24. M. Kania, M. Fereniec, R. Maniewski, Wavelet denoising for multi-lead high resolution ECG signals. Meas. Sci. Rev. 7(2), 30–33 (2007)

    Google Scholar 

  25. S. Karimifard, A. Ahmadian, and M. Khoshnevisan. Morphological heart arrhythmia detection using hermitian basis functions and kNN classifier. in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology 1–15, 2006, pp. 4489–4492

  26. A. Khazaee, A. Ebrahimzadeh, Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomed. Signal Process. Control 5, 252–263 (2010)

    Article  Google Scholar 

  27. S. Kiranyaz, T. Ince, J. Pulkkinen, M. Gabbouj, Personalized long-term ECG classification: a systematic approach. Expert Syst. Appl. 38(4), 3220–3226 (2011)

    Article  Google Scholar 

  28. B.U. Kohler, C. Henning, R. Orglmeister, The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)

    Article  Google Scholar 

  29. Y. Kutlu, K. Damla, A multi-stage automatic arrhythmia recognition and classification system. Comput. Biol. Med. 41, 37–45 (2011)

    Article  Google Scholar 

  30. S. le Cessie and J. C. van Houwelingen. (2012) Weka 3 - Data Mining with Open Source Machine Learning Software in Java. [Online]. http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/Logistic.html

  31. C. Li, C. Zheng, C.F. Tai, Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

    Article  Google Scholar 

  32. R.J. Martis, U.R. Acharya, K.M. Mandana, A.K. Ray, C. Chakraborty, Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39, 11792–11800 (2012)

    Article  Google Scholar 

  33. F. Melgani, B. Yakoub, Classification of ECG signals with support vector machine and particle swarm optimization III. IEEE Trans. Inf. Technol. Biomed. 12, 667–677 (2008)

    Article  Google Scholar 

  34. MIT-BIH Arrhythmia Database Directory. [Online]. http://www.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm (2014)

  35. J. G. Murphy and M. A. Lloyd, Mayo Clinic Cardiology: Concise Textbook, 3rd ed. Rochester, MN: Mayo Clinic Scientific Press and New York: Informa Healthcare USA, 2007

  36. J. Muthuswamy, N.V. Thakor, Spectral analysis methods for neurological signals. J. Neurosci. Methods 83, 1–14 (1998)

    Article  Google Scholar 

  37. J. Nadal and M. ve Bossan. Classification of cardiac arrhythmia based on principal components analysis and feed forward neural networks. in IEEE Proceedings on Computers in Cardiology, pp. 341–344, 1993

  38. Y. Özbay, R. Ceylan, B. Karlik, A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36, 376–388 (2006)

    Article  Google Scholar 

  39. Y. Özbay, R. Ceylan, B. Karlik, Integration of type-2 fuzzy clustering and wavelet transform in a neural network based ECG classifier. Expert Syst. Appl. 38, 1004–1010 (2011)

    Article  Google Scholar 

  40. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME–32(3), 230–236 (1985)

    Article  Google Scholar 

  41. J. Pardey, S. Roberts, L. Tarassenko, A review of parametric modelling techniques for EEG analysis. Med. Eng. Phys. 18(1), 2–11 (1996)

    Article  Google Scholar 

  42. T. Poggio, F. Girosi, Networks for approximation and learning. Proc. IEEE 78(9), 1481–1497 (1990)

    Article  Google Scholar 

  43. M.J.D. Powell, Radial basis functions for multivariable interpolation, in Algorithms for Approximation, ed. by J.C. Mason, M.G. Cox (Clarendon Press, Oxford, 1987)

    Google Scholar 

  44. G. K. Prasad and J. S. Sahambi. Classification of ECG arrhythmias using multiresolution analysis and neural networks. in Conference on convergent technologies for Asia-Pacific region (TENCON 2003) 1, 2003, pp. 227–231

  45. Z. Qin, J. Chen, Y. Liu, J. Lu, Evolving RBF Neural Networks for Pattern Classification. Lecture Notes in Computer Science vol. 3801, pp. 957–964 (2005)

  46. S. Raghav and A. K. Mishra. Fractal feature based ECG arrhythmia classification. in Proceedings of IEEE TENCON, 2008

  47. R. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  48. S.L. Salzberg, On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1(3), 317–328 (2007)

    Article  Google Scholar 

  49. O. Sayadi, M.B. Shamsollahi, G.D. Clifford, Robust detection of premature ventricular contractions using a wave-based bayesian framework. IEEE Trans. Biomed. Eng. 57(2), 353–362 (2010)

    Article  Google Scholar 

  50. J.L. Semmlow, Biosignal and Biomedical Image Processing: Matlab-Based Applications (Marcel Dekker Inc, Hoboken, 2004)

    Book  Google Scholar 

  51. C.P. Shen et al., Detection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machines. Expert Syst. Appl. 39, 7845–7852 (2012)

    Article  Google Scholar 

  52. M.H. Song, J. Lee, K.J. Cho, K.J. Lee, S.K. Yoo, Support vector machine based arrhythmia classification using reduced features. Int. J. Control Automat. Syst. 3(4), 571–579 (2005)

    Google Scholar 

  53. A. Subasi, E. Erçelebi, A. Alkan, E. Koklukaya, Comparison of subspace-based methods with AR parametric methods in epileptic seizure detection. Comput. Biol. Med. 36, 195–208 (2006)

    Article  Google Scholar 

  54. M.S. Thaler, The Only EKG Book You’ll Ever Need, 3rd edn. (Lippincott Williams & Wilkins, Philadelphia, 1999)

    Google Scholar 

  55. V. Vapnik, The nature of statistical learning theory (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  56. J.T. Willerson, H. Wellens, J.N. Cohn, D.R. Holmes, Cardiovascular Medicine, 3rd edn. (Springer, London, 2007)

    Book  Google Scholar 

  57. I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools And Techniques (Morgan Kaufmann Publishers (Elsevier), San Francisco, 2005)

    Google Scholar 

  58. P.A. Wolf, R.D. Abbott, W.B. Kannel, Atrial fibrillation as an independent risk factor for stroke: the Framingham study. Stroke 22(8), 983–988 (1991)

    Article  Google Scholar 

  59. Y.-C. Yeh, W.-J. Wang, C.W. Chiou, A novel fuzzy c-means method for classifying heartbeat cases from ECG signals. Measurement 43, 1542–1555 (2010)

    Article  Google Scholar 

  60. Z. Yong, H. Wenxue, and X. Yonghong. ECG beats feature extraction based on geometric algebra computational intelligence and software engineering. in International Conference on Computational Intelligence and Software Engineering, 2009 (CiSE 2009), 2009, pp. 1–3

  61. S.-N. Yu, K.-T. Chou, Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Appl. 34, 2841–2846 (2008)

    Article  Google Scholar 

  62. A.E. Zadeh, A. Khazaee, V. Ranaee, Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput. Methods Program Biomed. 99, 179–194 (2010)

    Article  Google Scholar 

  63. D. Zhang. Wavelet approach for ECG baseline wander correction and noise reduction. in IEEE Engineering in Medicine and Biology Society, 2005, pp. 1212–1215

  64. R. Zhang, G. McAllister, B. Scotney, S. McClean, G. Houston, Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response. IEEE Trans. Info. Tech. Biomed 10(3), 458–467 (2006)

    Article  Google Scholar 

  65. Z. Zidelmal, A. Amirou, D. Ould-Abdeslamb, J. Merckleb, ECG beat classification using a cost sensitive classifier. Comp. Methods Programs Biomed. 11(3), 570–577 (2013)

    Article  Google Scholar 

  66. M.H. Zweig, G. Campbell, Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful and valuable comments and suggestions that significantly contributed to improvement of the manuscript quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emina Alickovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alickovic, E., Subasi, A. Effect of Multiscale PCA De-noising in ECG Beat Classification for Diagnosis of Cardiovascular Diseases. Circuits Syst Signal Process 34, 513–533 (2015). https://doi.org/10.1007/s00034-014-9864-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9864-8

Keywords

Navigation