Skip to main content
Log in

Particle Swarm Optimization with Aging Leader and Challengers for Optimal Design of Analog Active Filters

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Due to the manufacturing limitations, the task of optimal analog active filter design by hand is very difficult. Evolutionary computation may be a competent implement for automatic selection of optimal discrete component values such as resistors and capacitors for analog active filter design. This paper presents an efficient approach for optimal analog filter design considering different topologies and manufacturing series by selecting their component values. The evolutionary optimization technique used is particle swarm optimization (PSO) with Aging Leader and Challenger (ALC-PSO). ALC-PSO performs the dual-task of efficiently selecting the component values as well as minimizing the total design errors of low pass active filters. The component values of the filters are selected in such a way so that they become E12/E24/E96 series compatible. The simulation results prove that ALC-PSO efficiently minimizes the total design error with respect to previously used optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. B. Biswal, P.K. Dash, B.K. Panigrahi, Power quality disturbance classification using fuzzy c-means algorithm and adaptive particle swarm optimization. IEEE Trans. Ind. Electron. 56(1), 212–220 (2009)

    Article  Google Scholar 

  2. S. Chen, B.L. Luk, Digital IIR filter design using particle swarm optimization. Int. J. Modell. Ident. Control. 9(4), 327–335 (2010)

    Article  Google Scholar 

  3. W. Chen, J. Zhang, Y. Lin, N. Chen, Z. Zhan, H. Chung, Y. Li, Y. Shi, Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evolut. Comput. 17(2), 241–258 (2013)

    Article  Google Scholar 

  4. R. Eberhart, Y. Shi, Comparison between genetic algorithm and particle swarm optimization. Evolutionary programming-VII. Lect. Notes Comput. Sci. 1447, 611–616 (1998)

    Article  Google Scholar 

  5. M. Fakhfakh, M. Pierzchala, A novel (DDCC-SFG)-based systematic design technique of active filters. Radio Eng. 22(3), 899–906 (2013)

    Google Scholar 

  6. W. Fang, J. Sun, W. Xu, A new mutated quantum behaved particle swarm optimizer for digital IIR filter design. EURASIP J. Adv. Signal Process. (2009). doi:10.1155/2009/367465

  7. R.A. Gayakwad, Op-amps and Linear Integrated Circuits (PHI, New Delhi, 2002)

    Google Scholar 

  8. M.S. Ghausi, K.R. Laker, Modern Filter Design: Active RC and Switch Capacitor (Prentice Hall, Englewood Cliffs, 1981)

    Google Scholar 

  9. G. Gomez, E.T. Cuautle, Sizing analog integrated circuits by current-branches-bias assignments with heuristics. Elektonika IR Elektrotechnika. 19(10), 81–86 (2013)

    Google Scholar 

  10. G. Gomez, E.T. Cuautle, L.G. de la Fraga, Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits. Appl. Math. Comput. 222, 167–176 (2013)

  11. V.G. Gudise, G.K. Venayagamoorthy, FPGA placement and routing using particle swarm optimization, in IEEE Computer Society Annual Symposium on VLSI, USA (2004), pp. 307–308

  12. M. Jiang, Z. Yang, Z. Gan, Optimal components selection for analog active filters using clonal selection algorithm, in Proceedings of ICIC (I), LNCS, vol. 4681 (2007), pp. 950–959

  13. A. Kalinli, Optimal circuit design using immune algorithm, in Proceedings of ICARIS, LNCS, vol. 3239, 2004, pp. 42–52

  14. A. Kalinli, Component value selection for active filters using parallel Tabu search algorithm. Int. J. Electron. Commun. (AEÜ) 60(1), 85–92 (2006)

    Article  Google Scholar 

  15. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Network, vol. 4, 1995, pp. 1942–1948

  16. M. Kotti, M. Fakhfakh, M.H. Fino, On the dynamic rounding-off in analogue and RF optimal circuit sizing. Int. J. Electron. 101(4), 452–468 (2014)

    Article  Google Scholar 

  17. M. Kotti, R. Gonzalez-Echevarria, F.V. Fernandez, E. Roca, J. Sieiro, R. Castro-Lopez, M. Fakhfakh, J.M. Lopez-Villegas, Generation of surrogate models of Pareto-optimal performance trade-offs of planar inductors. Anal. Integr. Circuits Signal Process. 78(1), 87–97 (2014)

    Article  Google Scholar 

  18. C. Lai, A novel image segmentation approach based on particle swarm optimization. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89-A(1), 324–327 (2006)

  19. S.H. Ling, H.H.C. Iu, F.H.F. Leung, K.Y. Chan, Improved hybrid particle swarm optimized wavelet neural network for modelling the development of fluid dispensing for electronic packaging. IEEE Trans. Ind. Electron. 55(9), 3447–3460 (2008)

    Article  Google Scholar 

  20. B. Liu, Q. Zhang, F.V. Fernandez, G.G.E. Gielen, An efficient evolutionary algorithm for chance-constrained bi-objective stochastic optimization. IEEE Trans. Evolut. Comput. 17(6), 786–796 (2013)

    Article  Google Scholar 

  21. B. Luitel, G.K. Venayagamoorthy, Particle swarm optimization with quantum infusion for system identification. Eng. Appl. Artif. Intell. 23, 635–649 (2010)

    Article  Google Scholar 

  22. P. Mohan, Sensitivity analysis of third and fourth-order filters. Circuits Syst. Signal Process. 29(5), 999–1005 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. X. Pan, H. Graeb, Reliability optimization of analog integrated circuits considering the trade-off between lifetime and area. Microelectron. Reliab. 52(8), 1559–1564 (2012)

    Article  Google Scholar 

  24. A. Sallem, B. Benhala, M. Kotti, M. Fakhfakh, A. Ahaitouf, M. Loulou, Application of swarm intelligence techniques to the design of analog circuits: evaluation and comparison. Anal. Integr. Circuits Signal Process. 75(3), 499–516 (2013)

    Article  Google Scholar 

  25. R. Schaumann, M.V. Valkenburg, Design of Analog Filters (Oxford University Press, New York, 2001)

    Google Scholar 

  26. Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in Proceedings of the IEEE Conference on Evolutionary Computation, 1999, pp. 1945–1950

  27. J. Sun, W. Fang, W. Xu, A quantum-behaved particle swarm optimization with diversity-guided mutation for the design of two-dimensional IIR digital filters. IEEE Trans. Circuits Syst. II 57(2), 141–145 (2010)

    Article  Google Scholar 

  28. S. Ulker, Particle swarm optimization applications to microwave circuits. Microw. Opt. Technol. Lett. 50(5), 1333–1336 (2008)

    Article  Google Scholar 

  29. A.D. Villasenor, E.T. Cuautle, L.G. de la Fraga, Binary genetic encoding for the synthesis of mixed-mode circuit topologies. Circuits Syst. Signal Process. 31(3), 849–863 (2012)

  30. R.A. Vural, T. Yildirim, Component value selection for analog active filter using particle swarm optimization, in Proceedings of the 2nd International Conference on Computer and Automation Engineering, vol. 1, 2010, pp. 25–28

  31. R.A. Vural, T. Yildirim, State variable filter design using particle swarm optimization, in Proceedings of XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design, 2010, pp. 1–4

  32. R.A. Vural, T. Yildirim, Analog circuit sizing via swarm intelligence. Int. J. Electron. Commun. (AEÜ) 66(9), 732–740 (2012)

    Article  Google Scholar 

  33. R.A. Vural, T. Yildirim, T. Kadioglu, A. Basargan, Performance evaluation of evolutionary algorithms for optimal filter design. IEEE Trans. Evolut. Comput. 16(1), 135–147 (2012)

    Article  Google Scholar 

  34. R.A. Vural, U. Bozkurt, T. Yildirim, Analog active filter component selection with nature inspired meta heuristics. Int. J. Electron. Commun. (AEÜ) 67(3), 197–205 (2013)

    Article  Google Scholar 

  35. H. Xu, Y. Ding, Optimizing method for analog circuit design using adaptive immune genetic algorithm, in Proceedings of International Conference on Frontier of Computer Science and Technology, 2009, pp. 359–363

  36. X. Yu, J. Liu, H. Li, An adaptive inertia weight particle swarm optimization algorithm for IIR digital filter, in IEEE International Conference on Artificial and Computational Intelligence, 2009, pp. 114–118

  37. R.S. Zebulum, M.A. Pacheco, M. Vellasco, Artificial evolution of active filters: a case study, in Proceedings of 1st NASA DoD Workshop on Evolvable Hardware, 1999, pp. 66–75

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, B.P., Kar, R., Mandal, D. et al. Particle Swarm Optimization with Aging Leader and Challengers for Optimal Design of Analog Active Filters. Circuits Syst Signal Process 34, 707–737 (2015). https://doi.org/10.1007/s00034-014-9872-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9872-8

Keywords

Navigation