
Circuits Syst Signal Process (2015) 34:1931–1945
DOI 10.1007/s00034-014-9933-z

Flexible Architecture Design for H.265/HEVC Inverse
Transform

Grzegorz Pastuszak

Received: 26 February 2014 / Revised: 28 October 2014 / Accepted: 29 October 2014 /
Published online: 13 November 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Highly-efficient video coding involves a great amount of computations.
Hardware encoders apply different parallelization techniques to satisfy real-time
requirements. This paper describes a novel design methodology for the 2D inverse
transform used in the H.265/HEVC hardware decoder and encoder. To support dif-
ferent transform sizes, matrix multiplications are decomposed into some steps based
on the division of transform blocks into fixed-size subblocks. The assumed order of
processed subblocks along with separate transform cores assigned to both dimensions
allows a significant reduction of the size of the transposition buffer, which in turn
decreases the resource consumption of the whole architecture. The decomposition
enables different hardware configurations of the architectures. Particularly, configu-
ration parameters enable the tradeoff between resources and throughput, the interface
adaptation to desired horizontal and vertical sizes, and the availability of particular
transform sizes. Two versions of the architecture are developed for FPGA and ASIC
technologies. Synthesis results show that they can operate at 200 and 400MHz when
implemented in FPGA Arria II and TSMC 90nm, respectively.

Keywords H.265/HEVC · Video coding · Discrete cosine transform (DCT) ·
FPGA · VLSI

1 Introduction

The latest research and standardization efforts in video coding have lead to a new
specification, called H.265/High Efficiency Video Coding (HEVC) [6,8]. It provides

G. Pastuszak (B)
Institute of Radioelectronics, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: G.Pastuszak@ire.pw.edu.pl

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-014-9933-z&domain=pdf


1932 Circuits Syst Signal Process (2015) 34:1931–1945

a significant rate-distortion improvement over its predecessor H.264/AVC [7] at the
price of the increased computational complexity. Although the general structure of
encoder and decoder remains the same, there are many changes in the algorithm of
each module. In the case of the transformation, H.265/HEVC specifies larger block
sizes. Apart from 4 × 4 and 8 × 8 blocks, the transformation can operate on 16 × 16
and 32 × 32 blocks. The larger blocks involve the increased size of the transposition
buffer between vertical and horizontal stages of the 2D transform. As a consequence,
the hardware architecture computing such a transform consumes a significant amount
of resources. Another improvement in H.265/HEVC is the use of better integer basis
functions (included in transformmatrices)which approximate originalDiscreteCosine
Transform (DCT). However, transform matrix elements have the extended range of
values (from −90 to 90), which involves multiplications. In the case of 4 × 4 intra
blocks, H.265/HEVC imposes the use of the integer approximation of Discrete Sine
Transform (DST).

In the literature, there are some architectures proposed for the computation of
DCT/IDCT for H.265/HEVC. Some of them do not support all transform sizes [5,
9,10,12]. All the designs embed (or assume [2]) the full-size transposition buffer
(32 × 32 samples) implemented either as a register matrix [4,5,11,15] or memory
modules [1,13–15]. For the register versions, the reported logic area is equivalent
to 183k [12], 125k [14], or 126k [15] basic gates. As the designs are dedicated for
specific throughputs, they cannot trade resources for the throughput. Implementations
embedding regular multipliers and the full-size transposition buffer involve a large
amount of hardware resources. To save them, some designs implement multiplications
with constant multipliers [4,5,9,14]. This approach is area-efficient when the output
contains the number of samples/coefficients equal to the 1D transform size (i.e. 32)
[13]. However, this output format is inconvenient and requires additional registers for
the adaptation to smaller sizes.

This work presents the novel design methodology for hardware-configurable IDCT
architectures. The methodology uses regular multiplication units and applies the
decomposition ofmatrixmultiplication into steps performed in successive clock cycles
on fixed-size subblocks distinguished in the input and output domains. The assumed
order of subblocks computed in the pipeline at both transform stages (vertical and
horizontal) allows the decreased size of the transposition buffer. Depending on the
configuration, the buffer resources are reduced by 54–88%. As a consequence, the
architecture outperforms other designs in terms of the area-speed efficiency. More-
over, the achieved latencies are the lowest. The configurability enables the tradeoff
between logic resources and throughput, the input/output interface adaptation, and the
selection of supported transform sizes/types.

2 IDCT Basics

In compression algorithms, DCT is often used to compact the signal energy in a
limited number of coefficients. On the other hand, IDCT restores the signal from the
coefficients. 1D transforms are computed by the multiplication of two matrices. One
of these matrices include input data included in the N × N transform block X. The



Circuits Syst Signal Process (2015) 34:1931–1945 1933

second matrix specifies basis functions constant for a given transform type. The 1D
vertical inverse transform on the N × N block X can be written as follows:

Y (i, j) =
N−1∑

k=0

C(k, i) ∗ X (k, j) (1)

where C and Y are the transform matrix and the result, respectively. This operation
involves N 3 multiplications. In IDCT, even and odd rows in the transformmatrix C are
symmetric and anti-symmetric, respectively (see 16×16matrix below). This property
can be utilized to decompose the transform formula into two cases having the same
partial sums:

Y (i, j) =
N/2−1∑

k=0

C(2k, i) ∗ X (2k, j) + C(2k + 1, i) ∗ X (2k + 1, j) (2)

Y (N − i − 1, j) =
N/2−1∑

k=0

C(2k, i) ∗ X (2k, j) − C(2k + 1, i) ∗ X (2k + 1, j) (3)

where i=0,1,..., N/2 1.
This type of the decomposition (using butterfly structures) reduces the number of

multiplications by half. In the case of the original DCT/IDCT, the transform can be
recursively decomposed according to Chen’s [3] scheme to reduce the number of
multiplications. This scheme cannot be applied in H.265/HEVC since the standard
specifies the integer approximation of the DCT matrix. Moreover, 4 × 4 intra blocks
are processed using the integer approximation of DST. The H.265/HEVC standard
specifies the 32 × 32 matrix which is directly applied to compute 32-point DCT and
IDCT. Smaller transforms are computed with subsampled versions of the matrix. The
16 × 16 matrix provided below is derived by the selection of every second row and
first 16 entries from each row. The 2D IDCT is obtained by applying the 1D IDCT
vertically and horizontally. The vertical transform is equivalent to the horizontal one
in terms of operations performed. Due to the increased size of the transforms, the
dynamic range after both stages is limited by downshifting.

(4)



1934 Circuits Syst Signal Process (2015) 34:1931–1945

3 Methodology

The proposed methodology consists of some key elements described in successive
subsections.

3.1 Decomposition

The computation of the 1D transform according to Eq.1 is susceptible to parallelize
in three ways. Firstly, a part of input coefficient/sample contributions can be accu-
mulated in one step. Secondly, separate accumulators can be assigned to each output
sample/coefficient. Thirdly, some rows/columns can be processed simultaneously due
to their independence. By combining the three methods, a number of multiplications
and accumulations can be executed in parallel. The three types of the parallelism are
orthogonal and specify a data cube processed in one step/phase. Thus, the matrix mul-
tiplication can be executed with a number of steps. Since the number of operations
performed within the data cube is configurable, they can be efficiently mapped to
available computational units. The decomposition of the 1D vertical transform into
steps/phases is depicted in Fig. 1. In the figure, W, Hi, and Ho are the subblock width,
the input-subblock height, and the output-subblock height, respectively. Loops indexed
by variables i, j, and k correspond to computations performed within one step/phase
as described below.

The decomposition divides input and output domains into subblocks as shown in
Fig. 2. Particularly, one input subblock is accessed to compute the partial sum for one
output subblock in each step/phase. Partial sums are accumulated in some successive
steps. In the vertical transform, each output subblock is computed from input subblocks
located in the corresponding column. For example, the output subblock indexed by
(X,2,3) in Fig. 2b is computed by the accumulation of contributions from four input
subblocks with indices (0,2,X), (1,2,X), (2,2,X), and (3,2,X) in Fig. 2a. Actually, each
column of the output subblock is computed from corresponding columns of input
subblocks, and several columns are processed simultaneously. Within each column,
all input coefficients contribute to each output one. If the height of input subblocks
is small, more steps are required. The selection of the size of output subblocks is
straightforward as it is sufficient to take into account coordinates within the selected
subblock (i/j indices in Eqs. 2 and 3). However, the widths of the output and input
subblocks must be selected jointly since they are equal to the number of columns
processed simultaneously. The total number ofmultiplications in the vertical transform
is equal to W × Hi × Ho.

3.2 Order Control

The computation of each 1D transform is controlled by three nested loops (see Figs. 1,
2). In the case of the vertical (horizontal) engine, the inner loop determines vertical
(horizontal) coordinates of accessed input subblocks (see Fig. 2a). Horizontal and
vertical coordinates of output subblocks are determined in the middle and outer loop,
respectively (see Fig. 2b). In the vertical processing, the middle loop also controls the



Circuits Syst Signal Process (2015) 34:1931–1945 1935

Fig. 1 Decomposition of the
vertical transform into
computation phases. Hi, Ho, and
W constants are powers of two
not greater than N

horizontal position of the input subblock. The order determined by the loops enables
processing of successive rows of output subblocks.

The example of the IDCT computation for the 32× 32 transform block is depicted
in Fig. 3. The processing is divided into two stages assigned to the vertical and the
horizontal transform. In each step of the vertical processing, one 8 × 8 input sub-
block distinguished in the 2D-transform domain is accessed and used to compute the
contribution to one 8× 4 output subblock distinguished in the 1D-transform domain.
Particularly, each eight-coefficient input column contributes to the corresponding four-
coefficient output column. The data cube has the size of 8×8×4, i.e., 256 multiplica-
tions are performed in one step. To compute one 8× 4 output subblock of the vertical



1936 Circuits Syst Signal Process (2015) 34:1931–1945

(a) (b)

Fig. 2 Example of the partitioning of the input (a) and output (b) domains into subblocks. Numbers point
to the loop iteration in which a subblock is accessed/computed. The first, the second, and the third index
are controlled by the inner, the middle, and the outer loop, respectively

Fig. 3 Row-oriented
computation of the 2D 32 × 32
transform. The input domain is
divided into 8 × 8 subblocks
read subsequently. Arrows with
numbers indicate the order of
subblock contributions. The
output subblock size at both
stages is set to 8 × 4

stage, contributions from four 8 × 8 input subblocks located in the same column are
accumulated in successive steps. Horizontally-successive 8 × 4 subblocks are com-
puted in the same way with the order specified by numbers (1–16) labeling arrows in
Fig. 3. When all these subblocks are computed, the resulting row of four subblocks
(32 × 4 coefficients) is forwarded to the horizontal stage. This operation can be per-
formed with the ping-pong intermediate buffer to allow the stage parallelism. At the



Circuits Syst Signal Process (2015) 34:1931–1945 1937

horizontal stage, one 8× 4 residual output subblock is computed by the accumulation
of contributions from four 8 × 4 subblocks stored in the buffer. In particular, each
eight-1D-coefficient row contributes to the collocated eight-residual output row. Each
of four output subblocks is obtained every fourth step (16 steps required for each row).
The processing order is indicated by numbers labeling arrows in Fig. 3. Similarly to
the vertical stage, each step of the horizontal stage requires 256 multiplications. The
16 × 16 IDCT can be computed in similar way. The main difference is that each
8×4 intermediate (output) subblock is computed by the accumulation of partial sums
obtained from two rather than four input (intermediate) subblocks.

The number of iterations of each loop is proportional to the transform size N
and inversely proportional to the width or height of input/output subblocks (Wi, Wo,
Hi, or Ho). For the vertical and horizontal transform, the total number of iterations
can be expressed as N 3/(W × Hi × Ho) and N 3/(H × Wi × Wo), respectively.
H denotes the height of the input and output subblocks. In reality, the number of
iterations must not be less than one, i.e., at least one iteration is indispensable to
perform the transformation. However, the expression can give the result smaller than
one if the transform size is small and subblock sizes are large. It means that resources
are not utilized fully for computations. To achieve a better utilization, one larger
(e.g. 8 × 8) output block composed of four smaller (e.g. 4 × 4) transform blocks
should be computed. For example, four 4× 4 transforms can be computed in parallel
if the subblock size specified at the output interface is 8 × 8. Generally, different
transform sizes can be computed on fixed-size subblocks by changing multiplication
coefficients.

3.3 Transposition Buffer Reduction

The proposed methodology assumes the use of separate pipelined engines for both
transform dimensions. The output subblock size used at the horizontal stage is the
same as at the vertical one. This feature enables the balance between throughputs of
both stages and facilitates the management of the transposition buffer, as explained
later. The computation of successive rows of output subblocks by the vertical trans-
form and the use of separate pipelined engines for both transform dimensions allow
the decreased height of the transposition buffer. Particularly, each row of subblocks
can be forwarded to horizontal processing immediately after the vertical engine fin-
ishes the computation of the last subblock in this row (see Fig. 3). With the assump-
tion that vertical and horizontal engines operate on separate parts of the buffer in
parallel, the buffer should keep two rows of subblocks. Hence, its height can be
decreased to 2Ho. If Ho after the horizontal stage was greater than that after the
vertical stage, the buffer size would have to be increased. If the heights are differ-
ent, additional multiplexing is indispensable to switch between coefficient rows. Pro-
vided that the subblock sizes are powers of two, the proposed methodology has the
advantage for Ho not greater than N/4. For Ho equal to N/2, the transposition buffer
has the size the same as in the traditional approach. Also, the full-size transposition
buffer would be indispensible if the 1D transform stages did not compute subblock
rows.



1938 Circuits Syst Signal Process (2015) 34:1931–1945

3.4 Interface Adaptation

In the decoder proposed by Tikekar et al. [14], the accumulation following the adder
tree enables only the adaptation of number of input samples/coefficients. The proposed
methodology is more flexible as it enables the adaptation to the output interface.
In particular, configuration constants at the HDL level determine the width and the
height of subblocks computed/released by the transform module. The size of the input
interface is dependent directly on the output one as the width constant is common
for them. To obtain the efficient fitting to DSP units in FPGA, the height of the input
matrix (vertical Hi) is fixed to eight in the implemented architecture. However, the
proposed design methodology is not limited by this choice in general.

3.5 Butterfly Restrictions

As described in the previous section, the number of multiplications can be decreased
by half with one butterfly decomposition. To benefit from this optimization, the height
of the output subblock should be greater than 1. As a consequence of the butterfly
operation, output subblocks after the 1D transform consist of two parts symmetric
to the center of the N × N transform result. The parts correspond to Eqs. 2 and 3
(opposite indexing of Y rows). The same rule refers to column pairs after the horizon-
tal transformation. Thus, except for particular cases, each output subblock after 2D
transform is composed of four not-adjacent rectangular parts. In order to reconstruct
the data coherence, the parts must be placed to relevant locations within the N × N
area kept in the output buffer.

4 Architecture

The general IDCT architecture applying the proposed methodology and its timing
diagram are depicted in Figs. 4 and 5, respectively. Although the timing diagram is
shown for the ASIC implementation, its FPGA version is similar. In particular, single
delay stages used before multiplication registers shift right the timing one and two
clock cycle for the vertical and horizontal stages, respectively. The diagram illustrates
computational dependencies between registers/stages distinguished in Fig. 4. Most
transactions are based on the pipeline dependencies. However, the data in the second
queue are transferred in the ring unless the queue is not reloaded. Details concerning
computations are described in the following paragraph.

The IDCT communicates with two external buffers (storing dequantized coeffi-
cients and reconstructed residuals) to allow the flexibility in communication with the
entropy decoder at the input and the reconstruction module at the output. The architec-
ture consists of three main submodules: the vertical transformation, the transposition
buffer, and the horizontal transformation. Transformation engines are pipelined to
maximize the clock rate. The first stage embeds multiplications, whereas the second
includes the adder tree with the accumulator. The third stage performs the butterfly
operation followed by rounding. The separate rounding adder is not present in the
ASIC version. Apart from the arithmetic operations, the transformation submodules



Circuits Syst Signal Process (2015) 34:1931–1945 1939

Fig. 4 General IDCT architecture. Registers distinguished as FPGA are implemented only in FPGA

Fig. 5 Timing diagram of the 2D 32 × 32 inverse transform (ASIC version). Subblocks are indexed by
horizontal and vertical coordinates. Input, queue, and residual indices corresponds to input, 1D-transformed,
and residual subblocks, respectively. For clarity, indices identify only top-left subblocks formed by butterfly
operations

embed the control logic. It provides coordinates for input/output subblocks according
to the order determined by three nested loops, as described in the previous section. The
vertical transform engine reads dequantized coefficients as W × Hi subblocks from
the external memory buffer. Vertically-transformed W × Ho subblocks are written to
the first register queue in the transposition buffer. The number of writes for one row
is equal N/W. Figure 4 shows the case for four writes. Both register queues have the
height of Ho. When the processing of one row of subblocks (N × Ho) is finished and
the horizontal transform engine is ready, the content of the first queue is written to the
second one. Next, the vertical transformation starts to write data from the following
row of subblocks to the same queue, whereas the horizontal transformation reads the
second queue. Since the same data have to be accessed for horizontally-consecutive



1940 Circuits Syst Signal Process (2015) 34:1931–1945

Fig. 6 FPGA architecture of the 1D (vertical) transformation. Rectangles correspond to registers

output subblocks, the second queue is designed as a ring buffer including four register
sections. As a consequence, four read accesses are needed to compute one residual
subblock (W × Ho) for 32 × 32 transform. For smaller transform sizes, only part
of registers are used, and the number of reads is decreased. Reconstructed residuals
produced by the horizontal transformation are stored to the buffer. As the output sub-
block is composed of four not-adjacent rectangular parts, the 2D coherency should
be restored in the reconstruction module. The restoration can be performed by the
selection of one part at the read port. Although the maximal throughput is decreased
four times, it can match the throughput of transform modules for the largest transform
size (32 × 32). To increase reading rate, the buffer for reconstructed residuals can be
divided into parts.

InFPGAtechnology, there aremodules dedicated for typicalDSPoperations such as
multiplications and accumulations. They allow designs to achieve higher performance
in terms of speed and resources. Particularly, the modules can be pipelined to increase
clock frequencies. Since the transformation involves a great amount of multiplications
and accumulations, it is beneficial to utilize DSP modules when implementing the
design in FPGA devices. However, the architecture optimized for ASIC technology is
not always suitable to obtain the best performance in FPGA, and vice versa. Moreover,
the same rule can apply to FPGA families from different vendors.

The architecture of the 1D transformation using Altera DSP modules is depicted
in Fig. 6. Although Hi/2 is fixed to four to fit FPGA resources, it can be changed if
needed. The 1D engine incorporates W × Ho DSP-4 units, each of which embeds
four multiplications, three adders, and one accumulator. The operations are performed
at two pipeline stages. There are three main differences with respect to the ASIC-
optimized design: the presence of input registers (labeled as FPGA), moving some
adders to the first stage (just after multiplications), and the use of separate adders



Circuits Syst Signal Process (2015) 34:1931–1945 1941

for the final rounding. These modifications enable fitting to the structure of DSP
modules available in Altera devices. The use of input registers (embedded in DSP) is
indispensible to eliminate the impact of signal delay inferred from routing. In ASIC-
oriented design, the rounding is implemented at the accumulation stage by providing
an appropriate argument to the adder in the first cycle (phase). Totally, the 2D transform
implemented in FPGA embeds 8 × W × Ho multipliers and 12 × W × Ho adders
(10 × W × Ho adders in ASIC).

5 Implementation Results

Two versions of the IDCT architecture are specified in VHDL and verified with the
HM 13.0 reference model [6]. The first version is dedicated for FPGA devices as
they embed DSP units. Each block includes pipelined multiplications and adder trees.
The second is optimized for ASIC designs. The synthesis is performed for FPGA
and ASIC technologies using the Altera Quartus II software and Synopsys Design
Compiler, respectively. Particularly, FPGA synthesis is performed for Arria II GX
FPGA devices, whereas TSMC 90nm is selected as the ASIC technology. In the
second case, the design takes advantage of clock gating to reduce power consumption.
Achieved frequencies are 200 and 400MHz for the FPGA and ASIC technologies,
respectively.

Table 1 shows the resource consumption for different sizes of output subblocks and
corresponding throughputs for different transform sizes (8×8/16×16/32×32). The
maximal throughput is achieved in the case of the 8 × 8 subblock size and the 8 × 8
transform. Particularly, only one iteration of all loops is required to compute result,
i.e., one 8× 8 transform block can be processed in each clock cycle. Throughputs for
particular configurations show that the design allows the decoder to support different
video resolutions. Provided themost-computationally-complex case (i.e., only 32×32
luma transforms and16×16 chroma transforms), the 2×2 and8×8 configurations have
the throughput of 0.8 and 12.8 pixels per clock cycle, respectively. If the first (slowest)

Table 1 Resource consumption for different configurations of the output interface

TSMC 90nm [gate] Arria II GX [ALUT]

Subblocks size Througput Total Buffer Total Buffer [DSP]

8x8 64/32/16 689,972 58,698 11,023 8,465 256

8x4 32/16/8 346,590 29,568 5,834 4,271 128

4x8 32/16/8 379,542 58,648 9,853 8,232 128

4x4 16/8/4 190,012 29,488 5,240 4,130 64

8x2 16/8/4 175,042 14,764 3,053 2,073 64

2x8 16/8/4 221,812 58,693 9,215 8,224 64

4x2 8/4/2 96,575 14,755 2,810 2,067 32

2x4 8/4/2 111,180 29,499 4,846 4,111 32

2x2 4/2/1 57,410 14,762 2,531 2,057 16



1942 Circuits Syst Signal Process (2015) 34:1931–1945

Table 2 Resource consumption for different configurations of supported transform sizes

Transform size Arria II GX TSMC 90nm

4 × 4 8 × 8 16 × 16 32 × 32 IDCT 8 × 2 IDCT 8 × 2

× × × × 3,075 175042

× × × 3,079 174933

× × 3,075 174,915

× 2,980 174,061

× × × 1,946 156,315

× × 1,353 130,759

× × 1,958 152,425

configuration operates at 200MHz (i.e. FPGA), the achieved throughput of 160M
pixels/sec enables the support for 1080p@60fps videos (required 125M pixels/sec).
The fastest 8× 8 configuration clocked at 400 MHz (i.e. ASIC) has the throughput of
5120M pixels/sec allowing the support for 7680p@120fps videos (required 3982M
pixels/sec).

The synthesis results included in Table 1 show that the dependence between
throughput and resource consumption is almost proportional. The proportionality
stems from the fact that the number of DSP-4 units (main contribution) is equal to
the doubled size of the output subblock. At the same throughput, the design requires
less resource when decreasing the subblock height. This stems from the fact that the
size of the transposition buffer depends on the output-subblock height rather than
the width. The impact of the buffer size on the resource consumption is strong for
FPGA, as each flip-flop must be mapped into a separate logic element (ALUT). Thus,
the full-size transposition buffer would consume 16k logic elements, which is much
more than the whole IDCT architecture with the 8 × 8 output. If the output subblock
height Ho is set to two, the buffer needs about 2k logic elements, i.e. the reduction
of 87% is achieved. In the case of AISC technologies, such a buffer consists of 16k
flip-flops and corresponding two-input multiplexers. For the TSMC 90nm general-
purpose nominal-threshold-voltage library, the smallest area of one pair is equivalent
to eight basic gates. Therefore, the buffer consumes resources equivalent to 128k gates.
Buffer sizes reported in Table 1 are significantly smaller, i.e., the buffer is decreased
by about 54–88%.

Table 2 shows the resource consumption for different configurations of supported
transform sizes. The results are provided for the output subblock size of 8 × 2 sam-
ples/coefficients. Note that the number of DSP units in the FPGA implementation
is constant and equal to 64 (128 multiplications). If the 32-point transform is sup-
ported, the resource consumption is not changed significantly regardless of the con-
figuration for the remaining ones. This observation stems from the fact that look-up
tables for transform coefficients take relatively a small amount of resources. There-
fore, the extended support for other symmetric transform matrices should slightly
affect the hardware complexity provided that the coefficient accuracy and transform
sizes are kept constant. On the other hand, removing the support for large transforms



Circuits Syst Signal Process (2015) 34:1931–1945 1943

Table 3 Comparison of different IDCT architectures

Design Zhu [15] Budagavi [2] Shen [13] Park [12]

Technology TSMC 90nm 45nm SMIC 0.13m 0.18m

Gate count (k) 412.3/320 130 109.2 287

Memory (bit) 0/16,384 – 18,944 –

Clock Frequency
(MHz)

311 250 350 300

Throughput 2D
(samples/clock)

4/8/16/32 2/4/8/16 2 2.1289

Latency (clock) 38 > 32 19/68/261 481

Transposition
buffer

registers/ memory not included memory 32 × 32 registers

Power (mW) 61.5/89.4 n.a. n.a. n.a.

Functionality IDCT, DCT, &
Hadamard

IDCT Multistandard
IDCT

16 × 16 and
32 × 32 IDCT

Design Tikekar [14] Chiang [4] This work This work

Technology TSMC 40nm 90nm TSMC 90nm TSMC 90nm

Gate count (k) 121.1 63.8(core)+70 175.0 96.6

Memory (bit) 16,384 – – –

Clock Frequency
(MHz)

200 270 400 400

Throughput 2D
(samples/clock)

2 2/2.67/2/1.39 16/16/8/4 8/8/4/2

Latency (clock) 256 8/16/72/416 7/7/10/22 8/8/14/38

Transposition
buffer

memory + 36
registers

32 × 32 registers 32 × 4 registers

Power (mW) n.a. n.a. 40.8 22.2

Functionality IDCT and
IDST−4 × 4

IDCT IDCT and IDST−4 × 4

significantly reduces the amount of resources. The main reason is the decrease of the
transposition buffer.

Table 3 provides the comparison of different IDCT/DCT architectures described
in literature. If applicable, throughputs are provided for different transform sizes
(4 × 4/8 × 8/16 × 16/32 × 32). Two versions of the proposed architecture hav-
ing throughputs close to those of referred designs are provided (subblock size equal
to 8× 2 and 4× 2). The proposed designs can operate at the highest frequencies. The
proposed methodology allows the lowest latencies. Owing to the decreased transpo-
sition buffer, the proposed architectures consume less resource at similar or higher
throughputs. Although some architectures incorporating memories needs less gates,
their total resource cost should be increased significantly. In particular, the area of
the 16kb on-chip memory divided into 32 modules is equivalent to 108.1k gates [15].
For lower throughputs, the number of memories can be traded for wider data widths
[13] or additional registers used before writing [14]. When four memory modules are
employed, their gate equivalent can be reduced about three times. If the single-port



1944 Circuits Syst Signal Process (2015) 34:1931–1945

memory is employed, the reduction is a little more. Although memory-based designs
[13,14] require a similar amount of resources compared to the proposed architecture
with the subblock size set to 4× 2, the throughput of the latter is significantly higher.

As IDCT process data in different order than neighboring modules (e.g. entropy
decoder and prediction/reconstruction), buffers are indispensible to form the process-
ing path [14]. Architectures based on the 32-point core require the adaptation of inter-
faces to the subblock processing order. In the proposed methodology, the adaptation
is natural since the subblock width and height are configurable. On the other hand, the
input buffer needs to be continuously accessed.

6 Conclusion

This paper proposes the flexible architecture design for the inverse transform used
in H.265/HEVC. The design methodology can also be applied in the development of
the forward transform. The methodology enables the reduction of the transposition
matrix, the resource-throughput tradeoff, and the interface adaptation to desired sub-
block sizes.Although regularmultiplication units are used, themethodology allows the
design to consume less resource compared to other approaches. Furthermore, architec-
tures can be easily adapted to support other transform sizes and types. If the additional
transformmatrix is symmetric, the changewould only affect the LUTprovidingmatrix
coefficients.

Acknowledgments This work is supported by the Foundation for the Development of Radiocommuni-
cations and Multimedia Technologies.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. A. Ahmed,M.U. Shahid, A.U. Rehman, N point DCTVLSI architecture for emerging HEVC standard.
VLSI Des. 2012, 6 (2012)

2. M. Budagavi, V. Sze, Unified forward+inverse transform architecture for HEVC. in Proceedings IEEE
International Conference on Image Processing (ICIP), (2012), pp. 209–212

3. W.H. Chen, C.H. Smith, S.C. Fralick, A fast computational algorithm for the discrete cosine transform.
IEEE Trans. Commun. 25(9), 10041009 (1977)

4. P.-T. Chiang, T. S. Chang, A reconfigurable inverse transform architecture design for HEVC decoder.
in Proceedings IEEE International Symposium on Circuits and Systems (ISCAS 2013), (2013), pp.
1006–1009

5. A. Edirisuriya, A. Madanayake, R.J. Cintra, F.M. Bayer, A multiplication-free digital architecture for
16×16 2-D DCT/DST transform for HEVC. in Proceedings IEEE 27th Convention of Electrical &
Electronics Engineers in Israel, (2012)

6. HEVC software repository - HM-13.0 reference model
7. ITU-T Recommendation H.264 and ISO/IEC 14496–10 MPEG-4 Part 10, Advanced Video Coding

(AVC), (2003)
8. ITU-T Recommendation H.265 and ISO/IEC 23008–2MPEG-H Part 2, High Efficiency Video Coding

(HEVC), (2013)



Circuits Syst Signal Process (2015) 34:1931–1945 1945

9. R. Jeske, J. C. de Souza, G. Wrege, R. Conceiao, M. Grellert, J. Mattos, L. Agostini, Low cost and
high throughput multiplierless design of a 16 point 1-D DCT of the new HEVC video coding standard.
in Proceedings VIII Southern Conference on Programmable Logic, (2012)

10. M. Martuza, K. Wahid, A cost effective implementation of 8×8 transform of HEVC from H.264/AVC.
in Proceedings IEEE Canadian Conference on Electrical & Computer Engineering, (2012)

11. P.K.Meher, S.Y. Park, B.K.Mohanty, K.S. Lim, C. Yeo, Efficient integer DCT architectures for HEVC.
IEEE Trans. Circuits Syst. Video Technol. 24(1), 168178 (2014)

12. J.-S. Park, W.-J. Nam, S.-M. Han, S. Lee, 2-D large inverse transform (16x16, 32x32) for HEVC (High
efficiency video coding). J. Semicond. Technol. Sci. 12(2), 203–211 (2012)

13. S. Shen, W. Shen, Y. Fan, X. Zeng, A unified 4/8/16/32-point integer IDCT architecture for multiple
video coding standards. in Proceedings IEEE International Conference on Multimedia and Expo,
(2012) pp. 788–793

14. M. Tikekar, C.-T. Huang, C. Juvekar, V. Sze, A.P. Chandrakasan, A 249-Mpixel/s HEVCvideo-decoder
chip for 4K ultra-HD applications. IEEE J. Solid State Circuits 49(1), 61–72 (2014)

15. J. Zhu, Z. Liu, D. Wang, Fully pipelined DCT/IDCT/Hadamard unified transform architecture for
HEVC codec. in Proceedings IEEE International Symposium on Circuits and Systems (ISCAS 2013),
(2013) pp. 677–681


	Flexible Architecture Design for H.265/HEVC Inverse Transform
	Abstract
	1 Introduction
	2 IDCT Basics
	3 Methodology
	3.1 Decomposition
	3.2 Order Control
	3.3 Transposition Buffer Reduction
	3.4 Interface Adaptation
	3.5 Butterfly Restrictions

	4 Architecture
	5 Implementation Results
	6 Conclusion
	Acknowledgments
	References




