Skip to main content
Log in

Band-Level Correlation Noise Modeling for Wyner–Ziv Video Coding with Gaussian Mixture Models

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

As one of the most adopted distributed video coding approaches in the literature, Wyner–Ziv (WZ) video coding is not yet on par with the motion-compensated predictive coding solutions with respect to rate–distortion (RD) performance. One of the essential reasons lies in the absence of reliable knowledge of the correlation statistics between source and side information. Most of the existing works assume a probability distribution of the statistical dependency to be Laplacian, which is not accurate but computationally cheap. In this paper, a correlation estimation based on Gaussian mixture model is proposed for the band-level correlation noise of discrete cosine transform domain Wyner–Ziv codec. The statistics of the correlation noise between WZ frame and corresponding side information is analyzed by considering the temporal correlation and quantization distortion. Accordingly, the model parameters for correlation noise are estimated offline and utilized online in consequent decoding. The simulation results of Kullback–Leibler divergence show that the proposed model has higher accuracy than the Laplacian one. Experimental results demonstrate that the WZ codec incorporated with the proposed model can achieve very competitive RD performance, especially for the sequence with high motion contents and large group of picture (GOP) size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Aaron, S. Rane, E. Setton, B. Girod, Transform-domain Wyner–Ziv codec for video, in Proceedings of SPIE Visual Communications and Image Processing, pp. 520–528, 2004

  2. A. Abou-Elailah, F. Dufaux, J. Farah, M. Cagnazzo, B. Pesquet-Popescu, Fusion of global and local motion estimation for distributed video coding. IEEE Trans. Circ. Syst. Video Technol. 23(1), 158–172 (2013)

    Article  Google Scholar 

  3. F. Akyildiz, T. Melodia, K.R. Chowdhury, A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921–960 (2007)

    Article  Google Scholar 

  4. I.F. Akyildiz, T. Melodia, K.R. Chowdhury, Wireless multimedia sensor networks: a survey. IEEE Wirel. Commun. Mag. 14(6), 32–39 (2007)

    Article  Google Scholar 

  5. G. Anastasi, M. Conti, M. Francesco, A. Passarella, Energy conservation in wireless sensor networks: a survey. Ad Hoc Netw. 7(3), 537–568 (2009)

    Article  Google Scholar 

  6. X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, M. Ouaret, The DISCOVER codec: architecture, techniques and evaluation, in Proceedings of Picture Coding Symposium, 2007

  7. J. Ascenso, C. Brites, O. Pereira, Content adaptive Wyner–Ziv video coding driven by motion activity, in IEEE International Conference on Image Processing, 2006

  8. C. Brites, F. Pereira, Correlation noise modeling for efficient pixel and transform domain Wyner–Ziv video coding. IEEE Trans. Circ. Syst. Video Technol. 18(9), 1117–1190 (2008)

    Article  Google Scholar 

  9. C. Brites, J. Ascenso, J. Quintas Pedro, F. Pereira, Evaluating a feedback channel based transform domain Wyner–Ziv video codec. Signal Process. Image Commun. 23(4), 269–297 (2008)

    Article  Google Scholar 

  10. H. Chen, E. Steinbach, Wyner–Ziv video coding based on turbo codes exploiting perfect knowledge of parity bits, in IEEE International Conference on Multimedia & Expo, ICME 2007, Beijing, China, 2007

  11. N. Deligiannis, A. Munteanu, T. Clerckx, J. Cornelis, P. Schelkens, Correlaiton channel estimation in pixel-domain distributed video coding, in Proceedings of 10th International Workshop on Image Analysis for Multimedia Interactive Services, 2009

  12. N. Deligiannis, J. Barbarien, M. Jacobs, A. Munteanu, A.N. Skodras, P. Schelkens, Side-information-dependent correlation channel estimation in hash-based distributed video coding. IEEE Trans. Image Process. 21(4), 1934–1949 (2012)

    Article  MathSciNet  Google Scholar 

  13. N. Deligiannis, A. Munteanu, S. Wang, S. Cheng, P. Schelkens, Maximum likelihood laplacian correlation channel estimation in layered Wyner–Ziv coding. IEEE Trans. Signal Process. 62(4), 892–904 (2014)

    Article  MathSciNet  Google Scholar 

  14. G. Esmaili, P. Cosman, Wyner–Ziv video coding with classified correlation noise estimation and key frame coding mode selection. IEEE Trans. Image Process. 20(9), 2463–2474 (2011)

    Article  MathSciNet  Google Scholar 

  15. X. Fan, O.C. Au, N.M. Cheung, Transform-domain adaptive correlation estimation (TRACE) for Wyner–Ziv video coding. IEEE Trans. Circ. Syst. Video Technol. 20(11), 1423–1436 (2010)

    Article  Google Scholar 

  16. S. Fang, Z. Li, L.W. Zhang, Distributed video codec modeling correlation noise in wavelet coarsest subband. Electron. Lett. 43(23), 1266–1267 (2007)

    Article  Google Scholar 

  17. B. Girod, A. Aaron, S. Rane, D. Rebollo-Monedero, Distributed video coding. Proc. IEEE Spec. Issue Video Coding Deliv. 93(1), 71–83 (2005)

  18. X. Huang, Improved virtual channel noise model for transform domain Wyner–Ziv video coding, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 921–924, 2009

  19. X. Huang, S. Forchhammer, Cross-band noise model refinement for transform domain Wyner–Ziv video coding. Signal Process. Image Commun. 27(1), 16–30 (2012)

    Article  Google Scholar 

  20. D. Kubasov, J. Nayak, C. Guillemot, Optimal reconstruction in Wyner–Ziv video coding with multiple side information, in Proceedings of the IEEE 9th Workshop on Multimedia Signal Processing, pp. 183–186, 2007

  21. E.Y. Lam, J.W. Goodman, A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans. Image Process. 9(10), 1661–1666 (2000)

    Article  MATH  Google Scholar 

  22. H.V. Luong, L.L. Raket, X. Huang, S. Forchhammer, Side information and noise learning for distributed video coding using optical flow and clustering. IEEE Trans. Image Process. 21(12), 4782–4796 (2012)

    Article  MathSciNet  Google Scholar 

  23. T. Maugey, J. Gauthier, B. Pesquet-Popescu, C. Guillemot, Using an exponential power model for Wyner–Ziv video coding, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2338–2341, 2010

  24. M. Yin, S. Cai, Y. Xie, Wyner–Ziv video coding based on Gaussian mixture model. Chin. J. Comput. 35(1), 173–182 (2012)

    Article  Google Scholar 

  25. S. Mys, J. Skorupa, P. Lambert, R. Van de Walle, C. Grecos, Accounting for quantization noise in online correlation noise estimation for distributed video coding, in Proceedings of Picture Coding Symposium, pp. 1–4, 2009

  26. S. Nadarajah, Gaussian DCT coefficient models. Acta Appl. Math. 106, 455–472 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. D. Persson, T. Eriksson, P. Hedelin, Packet video error concealment with Gaussian mixture models. IEEE Trans. Image Process. 17(2), 145–154 (2008)

    Article  MathSciNet  Google Scholar 

  28. R. Puri, A. Majumdar, P. Ishwar, K. Ramchandran, Distributed video coding in wireless sensor networks. IEEE Signal Process. Mag. 23(4), 94–106 (2006)

    Article  Google Scholar 

  29. C. Sanderson, K.K. Paliwal, Fast features for face recognition under illumination direction changes. Pattern Recogn. Lett. 24(14), 2409–2419 (2003)

    Article  Google Scholar 

  30. J. Skorupa, J. Slowack, S. Mys, N. Deligiannis, J.D. Cock, P. Lambert, A. Munteanu, R.V. de Walle, Exploiting quantization and spatial correlation in virtual-noise modeling for distributed video coding. Signal Process. Image Commun. 25(9), 674–686 (2010)

    Article  Google Scholar 

  31. J. Song, K. Wang, H. Liu, Y. Li, C. Wu, Progressive correlation noise refinement for transform domain Wyner–Ziv video coding, in IEEE International Conference on Image Processing, pp. 2625–2628, 2011

  32. V. Toto-Zarasoa, A. Roumy, C. Guillemot, Source modeling for distributed video coding. IEEE Trans. Circ. Syst. Video Technol. 22(2), 174–187 (2012)

    Article  Google Scholar 

  33. C.Y. Tsai, H.M. Hang, \(\rho \)-GGD source modeling for wavelet coefficients in image/video coding, in IEEE International Conference on Multimedia & Expo (ICME), pp. 601–604, 2008

  34. X. Van Hoang, B. Jeon, Flexible complexity control solution for transform domain Wyner–Ziv video coding. IEEE Trans. Broadcast. 58(2), 209–220 (2012)

    Article  Google Scholar 

  35. J.J. Verbeek, N. Vlassis, B. Kröse, Efficient greedy learning of Gaussian mixture models. Neural Comput. 15(2), 469–485 (2003)

    Article  MATH  Google Scholar 

  36. S. Wang, L. Cui, L. Stankovic, V. Stankovic, S. Cheng, Adaptive correlation estimation with particle filtering for distributed video coding. IEEE Trans. Circ. Syst. Video Technol. 22(5), 649–658 (2012)

    Article  Google Scholar 

  37. R.P. Westerlaken, R.K. Gunnewiek, R.L. Lagendijk, The role of the virtual channel in distributed source coding of video. IEEE Int. Conf. Image Process. 1, 581–584 (2005)

  38. Z. Xiong, A.D. Liveris, S. Cheng, Distributed source coding for sensor networks. IEEE Signal Process. Mag. 21(5), 80–94 (2004)

    Article  Google Scholar 

  39. Y. Yang, S. Cheng, Z. Xiong, W. Zhao, Wyner–Ziv coding based on TCQ and LDPC codes. IEEE Trans. Commun. 57(2), 376–387 (2009)

    Article  Google Scholar 

  40. G. Yazbek, C. Mokbel, G. Chollet, Video segmentation and compression using hierarchies of Gaussian mixture models, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. I-1009, 2007

  41. S. Ye, M. Ouaret, F. Dufaux, T. Ebrahimi, Improved side information generation for distributed video coding by exploiting spatial and temporal correlations. EURASIP J. Image Video Process. 1–15, 2009 (2009)

    Google Scholar 

  42. Y. Zhang, H. Xiong, Z. He, S. Yu, C.W. Chen, An error resilient video coding scheme using embedded Wyner–Ziv description with decoder side non-stationary distortion modeling. IEEE Trans. Circ. Syst. Video Technol. 21, 498–512 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The work of the second author was partially supported by the Commonwealth of Australian under the Australian-China Science and Research Fund (ACSRF01222) and the Australian Research Council (ARC) under Discovery Project Grant DP130100364. The work was also supported by the National Science Foundation of China, under Grant 61201392.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, M., Gao, J., Shi, D. et al. Band-Level Correlation Noise Modeling for Wyner–Ziv Video Coding with Gaussian Mixture Models. Circuits Syst Signal Process 34, 2237–2254 (2015). https://doi.org/10.1007/s00034-014-9951-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9951-x

Keywords

Navigation