Skip to main content
Log in

Bayesian Fusion of Ensemble of Multifocused Noisy Images

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper addresses the problem of simultaneous fusion and denoising of an ensemble of multifocused noisy source images using statistical approach. The central theme of the paper is to develop a novel generalized Bayesian framework based on maximum a posteriori (MAP) estimation technique to obtain the fused image from the noisy observations using a multiscale wavelet transform. A mathematically tractable multivariate a priori function is used in the MAP estimator to derive the closed-form expression of the fusion rule for the wavelet coefficients of noisy images. Experiments are carried out on a number of test-sets having an ensemble of multifocused source images with varying noise strengths to evaluate the performance of the proposed MAP-based fusion method as compared to the existing methods. Results show that the performance of the proposed method is better than that of the other wavelet or principal component analysis-based methods in terms of various metrics such as the structural similarity, peak signal-to-noise ratio and cross-entropy, uses of which are common both in the areas of fusion and denoising. In addition, the proposed method yields excellent results in terms of visual quality even in the case of non-Gaussian noise as well as computational load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Arivazhagan, L. Ganesan, T.G.S. Kumar, A modified statistical approach for image fusion using wavelet transform. Signal Image Video Process. 3, 137–144 (2009)

    Article  Google Scholar 

  2. L. Cao, L. Jin, H. Tao, G. Li, Z. Zhuang, Y. Zhang, Multi-focus image fusion based on spatial frequency in discrete cosine transform domain. IEEE Signal Process. Lett. 22(2), 220–224 (2015)

    Article  Google Scholar 

  3. Z. Chen, Y. Zheng, B.R. Abidi, D.L. Page, M.A. Abidi, A combinational approach to the fusion, de-noising and enhancement of dual-energy X-ray luggage images, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: Workshops, vol. 3., San Diego, 2005, p. 2

  4. H. Choi, J.K. Romberg, R.G. Baraniuk, N.G. Kingsbury, Hidden Markov tree modeling of complex wavelet transforms, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, Istambul, 2000, pp. 133–136

  5. I. De, B. Chanda, A simple and efficient algorithm for multifocus image fusion using morphological wavelets. Signal Process. 86, 924–936 (2006)

    Article  MATH  Google Scholar 

  6. I. De, B. Chanda, Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure. Inf. Fusion 14, 136–146 (2013)

    Article  Google Scholar 

  7. D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. D.L. Donoho, I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Escalante-Ramírez, The Hermite transform as an efficient model for local image analysis: an application to medical image fusion. Comput. Electr. Eng. 34, 99–110 (2008)

    Article  MATH  Google Scholar 

  10. D. Fasbender, J. Radoux, P. Bogaert, Bayesian data fusion for adaptable image pansharpening. IEEE Trans. Geosci Remote Sens. 46(6), 1847–1857 (2008)

    Article  Google Scholar 

  11. N.C. Giri, Introduction to Probability and Statistics, 2nd edn. (CRC Press, Boca Raton, 1993)

    MATH  Google Scholar 

  12. A.B. Hamza, Y. He, H. Krim, A. Willsky, A multiscale approach to pixel-level image fusion. Integr. Comput. Aided Eng. 12, 135–146 (2005)

    Google Scholar 

  13. K. Kotwal, S. Chaudhuri, A Bayesian approach to visualization-oriented hyperspectral image fusion. Inf. Fusion 14, 349–360 (2013)

    Article  Google Scholar 

  14. H. Li, Y. Chai, H. Yin, G. Liu, Multifocus image fusion and denoising scheme based on homogeneity similarity. Opt. Commun. 285, 91–100 (2012)

    Article  Google Scholar 

  15. H. Li, B.S. Manjunath, S.K. Mitra, Multisensor image fusion using the wavelet transform. Gr. Models Image Process. 57(3), 235–245 (1995)

    Article  Google Scholar 

  16. S. Li, J.S. Taylor, Comparison and fusion of multiresolution features for texture classification. Pattern Recognit. Lett. 26, 633–638 (2005)

    Article  MATH  Google Scholar 

  17. S. Li, B. Yang, Multifocus image fusion by combining curvelet and wavelet transform. Pattern Recognit. Lett. 29, 1295–1301 (2008)

    Article  Google Scholar 

  18. J. Liang, Y. He, D. Liu, X. Zeng, Image fusion using higher order singular value decomposition. IEEE Trans. Image Process. 21(5), 2898–2909 (2012)

    Article  MathSciNet  Google Scholar 

  19. J. Liu, P. Moulin, Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients. IEEE Trans. Image Process. 10(11), 1647–1658 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Z. Liu, P. Song, J. Zhang, J. Wang, Bidimensional empirical mode decomposition for the fusion of multispectral and panchromatic images. Int. J. Remote Sens. 28(18), 4081–4093 (2007)

    Article  Google Scholar 

  21. A. Loza, D. Bull, N. Canagarajah, A. Achim, Non-Gaussian model-based fusion of noisy images in the wavelet domain. Comput. Vis. Image Underst. 114, 54–65 (2010)

    Article  Google Scholar 

  22. C. Ludusan, O. Lavialle, Multifocus image fusion and denoising: a variational approach. Pattern Recognit. Lett. 33, 1388–1396 (2012)

    Article  Google Scholar 

  23. K. Mardia, Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519–530 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  24. M.K. Mihçak, I. Kozintsev, K. Ramchandran, P. Moulin, Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Process. Lett. 6(12), 300–303 (1999)

    Article  Google Scholar 

  25. G. Pajares, J.M. Cruz, A wavelet-based image fusion tutorial. Pattern Recognit. 37, 1855–1872 (2004)

    Article  Google Scholar 

  26. S. Pertuz, D. Puig, M.A. Garcia, A. Fusiello, Generation of all-in-focus images by noise-robust selective fusion of limited depth-of-field images. IEEE Trans. Image Process. 22(3), 1242–1251 (2013)

    Article  MathSciNet  Google Scholar 

  27. V.S. Petrović, C.S. Xydeas, Gradient-based multiresolution image fusion. IEEE Trans. Image Process. 13(2), 228–237 (2004)

    Article  Google Scholar 

  28. G. Piella, A general framework for multiresolution image fusion: from pixels to regions. Inf. Fusion 4, 259–280 (2003)

    Article  Google Scholar 

  29. S. Prasad, W. Li, J.E. Fowler, L.M. Bruce, Information fusion in the redundant-wavelet-transform domain for noise-robust hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 50(9), 3474–3486 (2012)

    Article  Google Scholar 

  30. T. Pu, G.Q. Ni, Contrast-based image fusion using the discrete wavelet transform. Opt. Eng. 39(8), 2075–2082 (2000)

    Article  Google Scholar 

  31. S.M.M. Rahman, M.O. Ahmad, M.N.S. Swamy, Contrast-based fusion of noisy images using discrete wavelet transform. IET Image Process. 4(5), 374–384 (2010)

    Article  MathSciNet  Google Scholar 

  32. R. Redondo, F. Šroubek, S. Fischer, G. Cristóbal, Multifocus image fusion using the log-Gabor transform and a multisize windows technique. Inf. Fusion 10, 163–171 (2009)

    Article  Google Scholar 

  33. S. Roy, T. Howlader, S.M.M. Rahman, Image fusion technique using multivariate statistical model for wavelet coefficients. Signal Image Video Process. 7(2), 355–365 (2013)

    Article  Google Scholar 

  34. M. Sasikala, M. Kumaravel, A comparative analysis of feature based image fusion method. Inf. Technol. J. 6(8), 1224–1230 (2007)

    Article  Google Scholar 

  35. A. Stein, Use of single- and multi-source image fusion for statistical decision-making. Int. J. Appl. Earth Obs. Geoinf. 6, 229–239 (2005)

    Article  Google Scholar 

  36. A. Toet, Hierarchical image fusion. Mach. Vis. Appl. 3, 1–11 (1990)

    Article  Google Scholar 

  37. T. Wan, C. Zhu, Z. Qin, Multifocus image fusion based on robust principal component analysis. Pattern Recognit. Lett. 34(9), 1001–1008 (2013)

    Article  Google Scholar 

  38. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 3(4), 600–612 (2004)

    Article  Google Scholar 

  39. J. Wu, J. Liu, J. Tian, H. Huang, Multi-scale image data fusion based on local deviation of wavelet transform, in Proceedings of the IEEE International Conference on Intelligent Mechatronics and Automation. Chengdu, 2004, pp. 677–680

  40. W. Xueyun, X. Huaping, L. Jingwen, W. Pengbo, Comparison of diverse approaches for synthetic aperture radar images pixel fusion under different precision registration. IET Image Process. 5(8), 661–670 (2011)

    Article  MathSciNet  Google Scholar 

  41. L. Yang, B.L. Guo, W. Ni, Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing 72, 203–211 (2008)

    Article  Google Scholar 

  42. H. Yesou, Y. Besnus, Y. Rolet, Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery—a contribution to the study of geological structures. ISPRS J. Photogramm. Remote Sens. 48(5), 23–36 (1993)

    Article  Google Scholar 

  43. S. Yin, L. Cao, Y. Ling, G. Jin, Fusion of noisy infrared and visible images based on anisotropic bivariate shrinkage. Infrared Phys. Technol. 54, 13–20 (2011)

    Article  Google Scholar 

  44. C. Yunhao, D. Lei, L. Jing, L. Xiaobing, S. Peijun, A new wavelet-based image fusion method for remotely sensed data. Int. J. Remote Sens. 27(7), 1465–1476 (2006)

    Article  Google Scholar 

  45. Q. Zhang, B. Guo, Multifocus image fusion using the nonsubsampled contourlet transform. Signal Process. 89, 1334–1346 (2009)

    Article  MATH  Google Scholar 

  46. Y. Zhang, Methods for image fusion quality assesment: a review, comparison and analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII(B7), 1101–1109 (2008)

    Google Scholar 

  47. Z. Zhang, R.S. Blum, A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proc. IEEE 87, 1315–1326 (1999)

    Article  Google Scholar 

  48. Y. Zheng, E.A. Essock, B.C. Hansen, Advanced discrete wavelet transform fusion algorithm and its optimization by using the metric of image quality index. Opt. Eng. 44(3), 037003-1–037003-12 (2005)

    Google Scholar 

  49. Y. Zheng, Z. Qin, L. Shao, X. Hou, A novel objective image quality metric for image fusion based on Renyi entropy. Inf. Technol. J. 7(6), 930–935 (2008)

    Article  Google Scholar 

  50. X. Zhou, W. Wang, R. Liu, Compressive sensing image fusion algorithm based on directionlets. EURASIP J. Wirel. Commun. Netw. 2014, 1–6 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to give thanks to the anonymous reviewers for their valuable comments that were useful to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mahbubur Rahman.

Appendix

Appendix

The joint PDF of \(X_1\), \(X_2\), and \(X_{\text {f}}\) is given by [33]

$$\begin{aligned}&p_{X_1,X_2,X_{\text {f}}}\big (x_1,x_2,x_{\text {f}}\big ) =\frac{1}{\sqrt{8\pi ^3\sigma _{11}\sigma _{22}\sigma _{\text {ff}}\gamma }}\nonumber \\&\quad \exp \Bigg [-\frac{1}{2\gamma }\bigg \{\alpha _1 x_1^2+ \alpha _2 x_2^2 +\alpha _3 x^2_{\text {f}}-2\beta _1x_1x_2-2\beta _2x_1x_{\text {f}}- 2\beta _3x_2x_{\text {f}}\bigg \}\Bigg ] \end{aligned}$$
(21)

Since the noise is uncorrelated with the reference images as well as the fused image

$$\begin{aligned} p_{X_1,X_2,N,X_{\text {f}}}\left( x_1,x_2,n,x_{\text {f}}\right)&=p_{X_1,X_2,X_{\text {f}}}\left( x_1,x_2,x_{\text {f}}\right) p_{N}\big (n\big )\nonumber \\&=\frac{1}{\sqrt{8\pi ^3\sigma _{11}\sigma _{22}\sigma _{\text {ff}}\gamma }} \exp \Big [-\frac{1}{2\gamma }\Big \{\alpha _1 x_1^2+ \alpha _2 x_2^2 + \alpha _3 x^2_{\text {f}}\nonumber \\&\qquad -2\beta _1x_1x_2-2\beta _2x_1x_{\text {f}}- 2\beta _3x_2x_{\text {f}}\Big \}\Big ]\nonumber \\&\quad \times \frac{1}{\sqrt{2\pi \sigma _{nn}}}\exp \left[ -\frac{n^2}{2\sigma _{nn}}\right] \end{aligned}$$
(22)

Consider the transformation of variables \(Y_1=X_1+N\), \(Y_2=X_2+N\) and \(Y_3=N\). The transformation is one-to-one, so there exists a unique inverse \(X_1=Y_1-Y_3\), \(X_2=Y_2-Y_3\) and \(N=Y_3\). The Jacobian of the transformation is

$$\begin{aligned} |J|=\bigg |\frac{\partial (X_1, X_2, N)}{\partial (Y_1,Y_2,Y_3)}\bigg |=1 \end{aligned}$$
(23)

Then the quadvariate joint PDF can be obtained as

$$\begin{aligned}&p_{Y_1,Y_2,Y_3,X_{\text {f}}}\left( y_1,y_2,y_3,x_{\text {f}}\right) \nonumber \\&\quad =\frac{1}{\sqrt{8\pi ^3\sigma _{11}\sigma _{22}\sigma _{\text {ff}}\gamma }} \exp \Big [-\frac{1}{2\gamma }\Big \{\alpha _1 (y_1-y_3)^2+ \alpha _2 (y_2-y_3)^2 + \alpha _3 x^2_{\text {f}}\nonumber \\&\qquad -2\beta _1(y_1-y_3)(y_2-y_3)-2\beta _2(y_1-y_3)x_{\text {f}}- 2\beta _3(y_2-y_3)x_{\text {f}}\Big \}\Big ]\nonumber \\&\qquad \times \frac{1}{\sqrt{2\pi \sigma _{nn}}}\exp \left[ -\frac{y_3^2}{2\sigma _{nn}}\right] \end{aligned}$$
(24)

Expanding the squared terms in the first exponent and collecting the terms that contain \(y_3^2\) and \(y_3\) gives

$$\begin{aligned}&p_{Y_1,Y_2,Y_3,X_{\text {f}}}\left( y_1,y_2,y_3,x_{\text {f}}\right) \nonumber \\&\quad =\frac{1}{\sqrt{8\pi ^3\sigma _{11}\sigma _{22}\sigma _{\text {ff}}\gamma }}\frac{1}{\sqrt{2\pi \sigma _{nn}}} \exp \Big [-\frac{1}{2\gamma }\Big \{\alpha _1 y_1^2+\alpha _2 y_2^2 + \alpha _3 x^2_{\text {f}}\nonumber \\&\qquad -2\beta _1y_1y_2-2\beta _2y_1x_{\text {f}}- 2\beta _3y_2x_{\text {f}}+(\alpha _1+\alpha _2-2\beta _1+\frac{\gamma }{\sigma _{nn}})y_3^2\nonumber \\&\qquad -2\Big ((\alpha _1-\beta _1)y_1+(\alpha _2-\beta _1)y_2- (\beta _2+\beta _3)x_{\text {f}}\Big )y_3\Big \}\Big ]\nonumber \\&\quad =\frac{1}{\sqrt{8\pi ^3\sigma _{11}\sigma _{22}\sigma _{\text {ff}}\gamma }}\frac{1}{\sqrt{2\pi \sigma _{nn}}} \exp \Big [-\frac{1}{2\gamma }\Big \{\alpha _1 y_1^2+ \alpha _2 y_2^2 + \alpha _3 x^2_{\text {f}}\nonumber \\&\qquad -2\beta _1y_1y_2-2\beta _2y_1x_{\text {f}}-2\beta _3y_2x_{\text {f}} \Big \}\Big ]\exp \left( -\frac{1}{2}\left( \lambda _3y_3^2-2\lambda _2y_3\right) \right) \end{aligned}$$
(25)

The required PDF \(p_{Y_1,Y_2,X_{\text {f}}}\big (y_1,y_2,x_{\text {f}}\big )\) is obtained after integrating out \(y_3\) and noting that \(\lambda _1=\sqrt{\frac{1}{\lambda _3\sigma _{nn}}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jhohura, F.T., Howlader, T. & Rahman, S.M.M. Bayesian Fusion of Ensemble of Multifocused Noisy Images. Circuits Syst Signal Process 34, 2287–2308 (2015). https://doi.org/10.1007/s00034-014-9956-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9956-5

Keywords

Navigation