Skip to main content
Log in

Covariance-Based DoA Estimation in a Krylov Subspace

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Covariance-based DoA estimation (CB-DoA) algorithms represent lower computational complexity alternatives to the traditional ESPRIT approach. This paper investigates CB-DoA using Krylov-subspace techniques (including Arnoldi’s and Lanczos’ updates) with respect to the resulting computational cost and estimation error performance. The proposed modifications also allow an automatic estimation of the number of sources. Computational analyses performed for the resulting CB-DoA algorithm indicate cost savings above \(60\,\%\) in comparison with the standard CB-DoA implementation, which already represents a \(20\,\%\) improvement upon its ESPRIT counterpart, at an equivalent mean squared error level, as verified in numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Almidfa, G.V. Tsoulos, A. Nix, Performance analysis of ESPRIT, TLS-ESPRIT and unitary ESPRIT algorithms for DoA estimation in a WCDMA mobile system, in Proceedings of International Conference on 3G Mobile Communication Technologies (2000), pp. 200–203

  2. W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9, 17–29 (1951)

    MATH  MathSciNet  Google Scholar 

  3. S. Chouvardas, K. Slavakis, S. Theodoridis, Trading off complexity with communication costs in distributed adaptive learning via Krylov subspaces for dimensionality reduction. IEEE J. Sel. Top. Signal Process. 7(2), 257–273 (2013)

    Article  Google Scholar 

  4. T.N. Ferreira, S.L. Netto, P.S.R. Diniz, Direction-of-arrival estimation using a low-complexity covariance approach. IEEE Trans. Aerosp. Electron. Syst. 48(3), 1924–1934 (2012)

    Article  Google Scholar 

  5. T.N. Ferreira, S.L. Netto, P.S.R. Diniz, Covariance-based direction-of-arrival estimation with real structures. IEEE Signal Process. Lett. 15, 757–760 (2008)

    Article  Google Scholar 

  6. T.N. Ferreira, S.L. Netto, P.S.R. Diniz, Low complexity covariance-based DoA estimation algorithm, in Proceedings of the 15th European Signal Processing Conference, Poznan, Poland (2007), pp. 100–104

  7. L.C. Godara, Applications of antenna arrays to mobile communications I: Performance improvement, feasibility and system considerations. Proc. IEEE 85(7), 1031–1060 (1997)

    Article  Google Scholar 

  8. G.H. Golub, C.F. van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  9. R. Grover, D.A. Pados, M.J. Medley, Subspace direction finding with an auxiliary-vector basis. IEEE Trans. Signal Process. 55(2), 758–763 (2007)

    Article  MathSciNet  Google Scholar 

  10. M. Haardt, J.A. Nossek, Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden. IEEE Trans. Signal Process. 43(5), 1232–1242 (1995)

    Article  Google Scholar 

  11. G. Hu, T. Kailath, Fast subspace decomposition. IEEE Trans. Signal Process. 42(3), 539–551 (1994)

    Article  Google Scholar 

  12. S. Qiao, G. Liu, W. Xu, Block Lanczos tridiagonalization of complex symmetric matrices, in Advanced Signal Processing Algorithms, Architectures, and Implementations XV, Proceedings of the SPIE, vol. 5910 ed. by F.T. Luk (2005), pp. 285–295

  13. R. Roy, T. Kailath, ESPRIT—estimation of parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  Google Scholar 

  14. R.O. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. AP–34(3), 276–280 (1986)

    Article  Google Scholar 

  15. J. Steinwandt, R.C. de Lamare, M. Haardt, Beamspace direction finding based on the conjugate gradient and the auxiliary vector filtering algorithms. Signal Process. 93, 641–651 (2012)

    Article  Google Scholar 

  16. T. Tazeen, A. Kansal, Low-complexity equalization of OFDM systems using Krylov subspace methods over doubly selective channels. Int. J. Emerg. Res. Manag. Technol. 3(8), 64–70 (2014)

    Google Scholar 

  17. L. Tong, G. Xu, T. Kailath, Blind identification and equalization based on second-order statistics: a time-domain approach. IEEE Trans. Inf. Theory 40(2), 340–349 (1994)

    Article  Google Scholar 

  18. L.N. Trefethen, D. Bau III, Numerical Linear Algebra (SIAM, Philadelphia, 1997)

    Book  MATH  Google Scholar 

  19. M. Wax, T. Kailath, Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 33(2), 387–392 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian National Council for Research and Development (CNPq), the Brazilian Ministry of Education’s CAPES, and the State of Rio de Janeiro Funding Support for Research (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeu N. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, T.N., de Campos, M.L.R. & Netto, S.L. Covariance-Based DoA Estimation in a Krylov Subspace. Circuits Syst Signal Process 34, 2363–2379 (2015). https://doi.org/10.1007/s00034-014-9966-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9966-3

Keywords

Navigation