Skip to main content
Log in

Global Adaptive Finite-Time Control for Stochastic Nonlinear Systems via State Feedback

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper discusses the problem of global adaptive finite-time control for a class of stochastic nonlinear systems with parametric uncertainty. Under the assumption that the drift and diffusion terms satisfy lower-triangular growth conditions, a continuous adaptive controller is designed based on the adding one power integrator technique and parameter separation principle. By constructing an adaptive law to counteract the effects of uncertain parameters, it is proved that system states can be regulated to the origin almost surely in a finite time. Two simulation examples are given to demonstrate the effectiveness of the proposed control procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. W. Ai, J. Zhai, S. Fei, Global finite-time stabilization for a class of stochastic nonlinear systems by dynamic state feedback. Kybernetika 49(4), 590–600 (2013)

    MATH  MathSciNet  Google Scholar 

  2. S.P. Bhat, D.S. Bernstein, Finite-time stability of homogeneous systems. Proc. Am. Control Conf. 4, 2513–2514 (1997)

    Article  Google Scholar 

  3. S.P. Bhat, D.S. Bernstein, Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Deng, M. Krstić, Stochastic nonlinear stabilization I: a backstepping design. Syst. Control Lett. 32(3), 143–150 (1997)

    Article  MATH  Google Scholar 

  5. H. Deng, M. Krstic, R.J. Williams, Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans. Autom. Control 46(8), 1237–1253 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Ding, C. Qian, S. Li, Q. Li, Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations. Int. J. Robust Nonlinear Control 21(3), 271–294 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Florchinger, Lyapunov-like techniques for stochastic stability. SIAM J. Control Optim. 33(4), 1151–1169 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Gao, F. Yuan, Adaptive stabilization of stochastic nonholonomic systems with nonlinear parameterization. Appl. Math. Comput. 219(16), 8676–8686 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. V.T. Haimo, Finite time controllers. SIAM J. Control Optim. 24(4), 760–770 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Y. Hong, J. Wang, D. Cheng, Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Autom. Control 51(5), 858–862 (2006)

    Article  MathSciNet  Google Scholar 

  11. X. Huang, W. Lin, B. Yang, Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Ji, Z. Chen, H. Xi, Adaptive stabilization for stochastic parametric-strict-feedback systems with wiener noises of unknown covariance. Int. J. Systems Sci. 34(2), 123–127 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Ji, H. Xi, Adaptive output-feedback tracking of stochastic nonlinear systems. IEEE Trans. Autom. Control 51(2), 355–360 (2006)

    Article  MathSciNet  Google Scholar 

  14. R. Khasminskii, Stochastic Stability of Differential Equations (S&N International Publisher, Rockville, 1980)

    Book  Google Scholar 

  15. S. Khoo, J. Yin, Z. Man, X. Yu, Finite-time stabilization of stochastic nonlinear systems in strict-feedback form. Automatica 49(5), 1403–1410 (2013)

    Article  MathSciNet  Google Scholar 

  16. M. Krstić, H. Deng, Stabilization of Nonlinear Uncertain Systems (Springer, London, 1998)

    MATH  Google Scholar 

  17. M. Krstić, I. Kanellakopoulos, P.V. Kokotović, Nonlinear and Adaptive Control Design (Wiley, New York, 1995)

    Google Scholar 

  18. W. Li, X. Liu, S. Zhang, Further results on adaptive state-feedback stabilization for stochastic high-order nonlinear systems. Automatica 48(8), 1667–1675 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. W. Lin, C. Qian, Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework. IEEE Trans. Autom. Control 47(5), 757–774 (2002)

    Article  MathSciNet  Google Scholar 

  20. S. Liu, J. Zhang, Output-feedback control of a class of stochastic nonlinear systems with linearly bounded unmeasurable states. Int. J. Robust Nonlinear Control 18(6), 665–687 (2008)

    Article  MATH  Google Scholar 

  21. X. Liu, D.W. Ho, W. Yu, J. Cao, A new switching design to finite-time stabilization of nonlinear systems with applications to neural networks. Neural Netw. 57, 94–102 (2014)

    Article  Google Scholar 

  22. X. Liu, J.H. Park, N. Jiang, J. Cao, Nonsmooth finite-time stabilization of neural networks with discontinuous activations. Neural Netw. 52, 25–32 (2014)

    Article  MATH  Google Scholar 

  23. A. Skorokhod, Studies in the Theory of Random Processes (Addison-Wesley, Boston, 1965)

    MATH  Google Scholar 

  24. J. Tian, X.J. Xie, Adaptive state-feedback stabilization for high-order stochastic non-linear systems with uncertain control coefficients. Int. J. Control 80(9), 1503–1516 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. J. Yin, S. Khoo, Z. Man, X. Yu, Finite-time stability and instability of stochastic nonlinear systems. Automatica 47(12), 2671–2677 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Yu, X. Yu, B. Shirinzadeh, Z. Man, Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. W. Zha, J. Zhai, W. Ai, S. Fei, Finite-time state-feedback control for a class of stochastic high-order nonlinear systems. Int. J. Comput. Math. 92(2), 643–660 (2015)

    Article  MathSciNet  Google Scholar 

  28. W. Zha, J. Zhai, S. Fei, Output feedback control for a class of stochastic high-order nonlinear systems with time-varying delays. Int. J. Robust Nonlinear Control 24(16), 2243–2260 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. W. Zha, J. Zhai, S. Fei, Y. Wang, Finite-time stabilization for a class of stochastic nonlinear systems via output feedback. ISA Trans. 53(3), 709–716 (2014)

    Article  Google Scholar 

  30. J. Zhai, Decentralised output-feedback control for a class of stochastic non-linear systems using homogeneous domination approach. IET Control Theory Appl. 7(8), 1098–1109 (2013)

    Article  MathSciNet  Google Scholar 

  31. J. Zhai, Finite-time output feedback stabilization for stochastic high-order nonlinear systems. Circuits Syst. Signal Process. 33(12), 3809–3837 (2014)

    Article  Google Scholar 

  32. J. Zhai, Global finite-time output feedback stabilisation for a class of uncertain non-triangular nonlinear systems. Int. J. Systems Sci. 45(3), 637–646 (2014)

    Article  MATH  Google Scholar 

  33. X. Zhang, G. Feng, Y. Sun, Finite-time stabilization by state feedback control for a class of time-varying nonlinear systems. Automatica 48(3), 499–504 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (61473082, 61104068, 61273119), Scientific Innovation Research of College Graduates in Jiangsu Province (KYLX_0134), Fundamental Research Funds for the Central Universities (2242013R30006), and Six Talents Peaks Program of Jiangsu Province (2014-DZXX-003) and PAPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyong Zhai.

Appendix

Appendix

For convenience, some generic functions \(\beta _i(\bar{x}_i,\hat{\varTheta })\), \(i=1,\ldots ,n\), are used throughout the paper to stand for any nonnegative smooth functions with respect to their variables and may be implicitly changed in different places.

Proof of Proposition 1

The estimate of \(|\partial (x_k^{*1/r_k})/\partial x_i|\) can be done by an inductive argument. Note that

$$\begin{aligned} \Big |\frac{\partial x_2^{*\mu /r_2}}{\partial x_1}\Big |=&\Big |\frac{\partial \big (\xi _1\rho _1^{ \mu /r_2}(x_1,\hat{\varTheta })\big )}{\partial x_1}\Big |\le |\xi _1|^{\frac{\mu -r_1}{\mu }}\beta _1(x_1,\hat{\varTheta }). \end{aligned}$$
(40)

Assume that, for \(i=1,\ldots ,k-2\),

$$\begin{aligned} \Big |\frac{\partial x_{k-1}^{*\mu /r_{k-1}}}{\partial x_i}\Big |\le \left( \sum _{j=1}^{k-2}|\xi _j|^{\frac{\mu -r_i}{\mu }}\right) \beta _{k-2}(\bar{x}_{k-2},\hat{\varTheta }). \end{aligned}$$
(41)

Therefore, it can be verified that

$$\begin{aligned} \Big |\frac{\partial x_{k}^{*\mu /r_{k}}}{\partial x_i}\Big |\le&\Big |\xi _{k-1}\frac{\partial \rho _{k-1}^{\mu /r_k}(\cdot )}{\partial x_i}\Big |+\Big |\rho _{k-1}^{\mu /r_k}(\cdot )\frac{\partial x_{k-1}^{*\mu /r_{k-1}}}{\partial x_i}\Big |\nonumber \\ \le&\,|\xi _{k-1}|^{\frac{\mu -r_i}{\mu }}\beta _{k-1}(\cdot ) +\left( \sum _{j=1}^{k-2}|\xi _j|^{\frac{\mu -r_i}{\mu }}\right) \beta _{k-2}(\cdot )\rho _{k-1}^{\mu /r_k}(\cdot )\nonumber \\ \le&\left( \sum _{j=1}^{k-1}|\xi _j|^{\frac{\mu -r_i}{\mu }}\right) \beta _{k-1}(\cdot ),\quad i=1,\ldots ,k-2, \end{aligned}$$
(42)
$$\begin{aligned} \Big |\frac{\partial x_{k}^{*\mu /r_k}}{\partial x_{k-1}}\Big |\le&\Big |\xi _{k-1}\frac{\partial \rho _{k-1}^{\mu /r_k}(\cdot )}{\partial x_{k-1}}\Big |+\Big |\rho _{k-1}^{\mu /r_k}(\cdot )\frac{\mu }{r_{k-1}}x_{k-1}^{\frac{\mu -r_{k-1}}{r_{k-1}}}\Big |\nonumber \\ \le&\,\left( \sum _{j=1}^{k-1}|\xi _j|^{\frac{\mu -r_{k-1}}{\mu }}\right) \beta _{k-1}(\cdot ) \end{aligned}$$
(43)

which implies that (41) also holds for the \(k\)th virtual controller. According to the definition of \(\xi _i\), \(i=1,\ldots ,k\), and Lemma 4, one gets

$$\begin{aligned} |x_i|\le (|\xi _i|+|\xi _{i-1}\rho _{i-1}^{\mu /r_i}(\cdot )|)^{r_i/\mu } \le |\xi _i| ^{r_i/\mu }+|\xi _{i-1}|^{r_i/\mu }\rho _{i-1}(\cdot ),\quad i=2,\ldots ,k \end{aligned}$$
(44)

which leads to \(\forall i=1,\ldots ,k-1\)

$$\begin{aligned} \Big |\frac{\partial W_k}{\partial x_i}x_{i+1}\Big |\le&|\xi _k|^3\big (\sum _{j=1}^{k-1}|\xi _j|^{\frac{\mu -r_i}{\mu }}\big ) \big (|\xi _{i+1}|^{r_{i+1}/\mu }+|\xi _{i}|^{r_{i+1}/\mu }\rho _{i}(\cdot )\big )\beta _{k-1}(\cdot )\nonumber \\ \le&\,\frac{1}{3(k-1)}\sum _{j=1}^{k-1}|\xi _j|^{\frac{4\mu +\tau }{\mu }}+|\xi _k|^{\frac{4\mu +\tau }{\mu }}\beta _{k-1}(\cdot ). \end{aligned}$$
(45)

Clearly, Proposition 1 follows from (45). \(\square \)

Proof of Proposition 2

Under Assumption 1, the drift terms can be estimated as

$$\begin{aligned} |f_i|\le&\left( |\xi _1|^{\frac{r_i+\tau }{\mu }}+\sum _{j=2}^i\left( |\xi _j| ^{\frac{r_i+\tau }{\mu }}+\rho _{j-1}^{\frac{r_i+\tau }{r_j}}(\cdot )|\xi _{j-1}|^{\frac{r_i+\tau }{\mu }}\right) \right) \gamma _{i1}(\bar{x}_i)\varTheta \nonumber \\ \le&\left( |\xi _1|^{\frac{r_i+\tau }{\mu }}+\cdots +|\xi _i|^{\frac{r_i+\tau }{\mu }}\right) \beta _i(\cdot )\varTheta ,\quad i=1,\ldots ,k. \end{aligned}$$
(46)

According to Lemmas 4 and 5, one has \(\forall i=1,\ldots ,k\)

$$\begin{aligned} \Big |\frac{\partial W_k}{\partial x_i}f_i\Big |\le&|\xi _k|^3\left( \sum _{j=1}^{k-1}|\xi _j|^{\frac{\mu -r_i}{\mu }}\right) \big (|\xi _1|^{r_{i+1}/\mu }+\cdots +|\xi _{i}|^{r_{i+1}/\mu }\big )\beta _{k}(\cdot )\varTheta \nonumber \\ \le&\,\frac{1}{3k}\varTheta \sum _{i=1}^{k-1}|\xi _j|^{\frac{4\mu +\tau }{\mu }} +\varTheta |\xi _k|^{\frac{4\mu +\tau }{\mu }}\beta _k(\cdot ), \end{aligned}$$
(47)

under which Proposition 2 holds naturally. \(\square \)

Proof of Proposition 3

Based on Assumption 1, one has \(\forall i=1,\ldots ,k\)

$$\begin{aligned} \Vert g_i\Vert \le&\left( |x_1|^{\frac{2r_i+\tau }{2r_1}}+\cdots +|x_i|^{\frac{2r_i+\tau }{2r_i}}\right) \eta _{i1}(\bar{x}_i)\eta _{i2}(\theta )\nonumber \\ \le&\left( |\xi _1|^{\frac{2r_i+\tau }{2\mu }}+\cdots +|\xi _i|^{\frac{2r_i+\tau }{2\mu }}\right) \beta _i(\cdot )\eta _{i2}(\theta ). \end{aligned}$$
(48)

Similar to the proof in Proposition 1, the estimate of \(|\partial ^2(x_k^{*\mu /r_k})/\partial x_i^2|\) can also be done inductively. Specifically, for \(i=1,\ldots ,k-1\)

$$\begin{aligned} \Big |\frac{\partial ^2 x_{k}^{*\frac{\mu }{r_{k}}}}{\partial x_i^2}\Big |\le \left( \sum _{j=1}^{k-1}|\xi _j|^{\frac{\mu -2r_i}{\mu }}\right) \beta _{k-1}(\cdot ). \end{aligned}$$
(49)

Combining (48) and (49), it yields that for \(i=1,\ldots ,k-1\),

$$\begin{aligned} \frac{1}{2}\frac{\partial ^2 W_k}{\partial x_i^2}\Vert g_i\Vert ^2 \le&\left( \sum _{j=1}^{k-1}|\xi _j|^{\frac{\mu -2r_i}{\mu }}\right) |\xi _k|^3\left( \sum _{l=1}^i|\xi _l|^{\frac{2r_i+\tau }{2\mu }}\right) ^2\varTheta \beta _{k-1}(\cdot )\nonumber \\&+\,\left( \sum _{j=1}^{k-1}|\xi _j|^{\frac{\mu -r_i}{\mu }}\right) ^2|\xi _k|^2\left( \sum _{l=1}^i|\xi _l|^{\frac{2r_i+\tau }{2\mu }}\right) ^2\varTheta \beta _{k-1}(\cdot )\nonumber \\ \le&\,\frac{1}{3k}\varTheta \sum _{j=1}^{k-1}|\xi _j|^{\frac{4\mu +\tau }{\mu }}+\varTheta |\xi _k|^{\frac{4\mu +\tau }{\mu }}\bar{h}_{k3}(\cdot ) \end{aligned}$$
(50)

where \(\bar{h}_{k3}(\cdot )\ge 0\) is a smooth function of \(x_1,\ldots ,x_{k-1},\hat{\varTheta }\). Moreover, for a nonnegative smooth function \(\tilde{h}_{k3}(\bar{x}_k,\hat{\varTheta })\)

$$\begin{aligned} \frac{1}{2}\frac{\partial ^2 W_k}{\partial x_k^2}\Vert g_k\Vert ^2\le&|\xi _k|^{\frac{3\mu -r_k}{\mu }}\left( |\xi _{k-1}|^{\frac{\mu -r_k}{\mu }}+|\xi _k|^{\frac{\mu -r_k}{\mu }}\right) \left( \sum _{j=1}^k|\xi _j|^{\frac{2r_k+\tau }{2\mu }}\right) ^2\varTheta \beta _k(\cdot )\nonumber \\ \le&\frac{1}{3k}\varTheta \sum _{j=1}^{k-1}|\xi _j|^{\frac{4\mu +\tau }{\mu }}+\varTheta |\xi _k|^{\frac{4\mu +\tau }{\mu }}\tilde{h}_{k3}(\cdot ). \end{aligned}$$
(51)

It is clear that Proposition 3 follows from (50) and (51), by letting \(h_{k3}(\cdot )\!=(k\!-1)\bar{h}_{k3}(\cdot )+\tilde{h}_{k3}(\cdot )\). \(\square \)

Proof of Proposition 4

In a similar way, for \(i,j=1,\ldots ,k-1\) and \(i\ne j\),

$$\begin{aligned} \Big |\frac{\partial ^2 x_{k}^{*\mu /r_k}}{\partial x_i\partial x_j}\Big |\le \left( \sum _{l=1}^{k-1}|\xi _l|^{\frac{\mu -r_i-r_j}{\mu }}\right) \beta _{k-1}(\cdot ) \end{aligned}$$
(52)

under which

$$\begin{aligned} \frac{\partial ^2 W_k}{\partial x_i\partial x_j}\Vert g_i^T\Vert \Vert g_j\Vert \le&\frac{1}{3(k-1)(k-2)}\varTheta \sum _{l=1}^{k-1}|\xi _l|^{\frac{4\mu +\tau }{\mu }}+ \varTheta |\xi _k|^{\frac{4\mu +\tau }{\mu }}\bar{h}_{k4}(\bar{x}_{k-1},\hat{\varTheta }) \end{aligned}$$
(53)

where \(\bar{h}_{k4}(\cdot )\) is a nonnegative smooth function. For \(i=k\) and \(j\ne k\), there exists a smooth function \(\tilde{h}_{k4}(\bar{x}_k,\hat{\varTheta })\) satisfying

$$\begin{aligned} \frac{\partial ^2 W_k}{\partial x_k\partial x_j}\Vert g_k^T\Vert \Vert g_j\Vert \le&\frac{1}{6(k-1)}\varTheta \sum _{i=1}^{k-1}|\xi _i|^{\frac{4\mu +\tau }{\mu }}+ \varTheta |\xi _k|^{\frac{4\mu +\tau }{\mu }}\tilde{h}_{k4}(\cdot ). \end{aligned}$$
(54)

which leads to Proposition 4 by combining it with (53). \(\square \)

Proof of Proposition 5

Using (15) and the definition of \(\sigma _k\), one can get

$$\begin{aligned} \frac{\partial W_k}{\partial \hat{\varTheta }}\sigma _k\le&\frac{\partial x_k^{*\mu /r_k}}{\partial \hat{\varTheta }}|\xi _k|^3\left( \sum _{i=1}^k|\xi _i|^{\frac{4\mu +\tau }{\mu }}\right) \beta _k(\cdot )\nonumber \\ \le&\,\frac{1}{3}\sum _{i=1}^{k-1}|\xi _i|^{\frac{4\mu +\tau }{\mu }}+|\xi _k|^{\frac{4\mu +\tau }{\mu }}h_{k5}(\bar{x}_k,\hat{\varTheta }) \end{aligned}$$
(55)

for a nonnegative smooth function \(h_{k5}(\cdot )\). In addition, it is easy to obtain that

$$\begin{aligned} \sum _{i=1}^{k-1}\frac{\partial W_i}{\partial \hat{\varTheta }}\delta _k(\cdot )\xi _k^{\frac{4\mu +\tau }{\mu }}\le \left( 1+\left( \sum _{i=1}^{k-1}\frac{\partial W_i}{\partial \hat{\varTheta }}\delta _k(\cdot )\right) ^2\right) ^{1/2}\xi _k^{\frac{4\mu +\tau }{\mu }}. \end{aligned}$$
(56)

By choosing \(h_{k6}(\bar{x}_k,\hat{\varTheta })=\sqrt{1+(\sum _{i=1}^{k-1}\frac{\partial W_i}{\partial \hat{\varTheta }}\delta _k(\cdot ))^2}\), we complete the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, W., Zhai, J. & Fei, S. Global Adaptive Finite-Time Control for Stochastic Nonlinear Systems via State Feedback. Circuits Syst Signal Process 34, 3789–3809 (2015). https://doi.org/10.1007/s00034-015-0043-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0043-3

Keywords

Navigation