Skip to main content
Log in

An Effective Time Delay Estimation Method Based on Frequency Difference Compensation for Narrowband RF Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper addresses a novel time delay estimation (TDE) method for narrowband RF signals with intermediate frequency difference (IFD). Since IFD is the main factor which affects the TDE precision, we present the frequency detection TDE model with IFD and discuss the effects of the IFD on the TDE. Then, a frequency detection TDE method based on IFD compensation is proposed. Especially, an improved frequency-domain cross-correlation method is adopted to estimate the IFD. The effectiveness of the algorithm is verified by MATLAB simulation. Simulation results demonstrate that the proposed TDE method shows a significant performance improvement over the classical TDE method based on Hilbert transform. Furthermore, the proposed method is also used in the actual system, and its estimation value is very close to the true value, which presents an enormous engineering practicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Z. Cheng, T.T. Tjhung, A new time delay estimator based on ETDE. IEEE Trans. Signal Process. 51(7), 1859–1869 (2003)

    Article  Google Scholar 

  2. F.X. Ge, D.X. Shen, Y.N. Peng, V.O. Li, Super-resolution time delay estimation in multipath environments. IEEE Trans. Circuits Syst. 54(9), 1977–1985 (2007)

    Article  Google Scholar 

  3. Y. He, M. Wu, G.P. Liu, Output feedback stabilization for a discrete-time system with a time-varying delay. IEEE Trans. Autom. Control. 53(10), 2372–2377 (2008)

    Article  MathSciNet  Google Scholar 

  4. K.C. Ho, P.C. Ching, Statistical performance analysis of a fast stochastic gradient for constrained adaptive time delay estimation. Circuits Syst. Signal Process. 12(3), 453–464 (1993)

    Article  MATH  Google Scholar 

  5. C.H. Knapp, G.C. Carter, Estimation of time delay in the presence of source or receiver motion. J. Acoust. Soc. Am. 61(6), 1545–1549 (1977)

    Article  Google Scholar 

  6. X. Li, H. Gao, A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis. IEEE Trans. Autom. Control 56(9), 2172–2178 (2011)

    Article  Google Scholar 

  7. J. Lim, H.S. Pang, Time delay estimation method based on canonical correlation analysis. Circuits Syst. Signal Process. 32(5), 2527–2538 (2013)

    Article  MathSciNet  Google Scholar 

  8. C.L. Nikias, R. Pan, Time delay estimation in unknown Gaussian spatially correlated noise. IEEE Trans. Acoust. Speech Process. 36(11), 1706–1714 (1988)

    Article  MATH  Google Scholar 

  9. X.Z. Ning, Z.Q. Li, Q.H. Ying, An application of MUSIC algorithm in no-cooperative passive location. In: Proceedings of 6th international symposium on antennas, propagation and EM theory, pp. 616–619 (2003)

  10. A.G. Piersol, Time delay estimation using phase data. IEEE Trans. Acoust. Speech Process. 29(3), 471–477 (1981)

    Article  Google Scholar 

  11. M.I. Skolnik, Introduction to Radar Systems, 3rd edn. (McGraw Hill Electrical Engineering, New York, 2001)

    Google Scholar 

  12. S. Stein, Differential delay/doppler ML estimation with unknown signals. IEEE Trans. Signal Process. 14(8), 2717–2719 (1993)

    Article  Google Scholar 

  13. P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer–Rao bound. IEEE Trans. Acoust. Speech Signal Process. 37(5), 720–741 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Valaee, B. Champagne, P. Kabal, Parametric location of distributed sources. IEEE Trans. Signal Process. 43(9), 2144–2153 (1995)

    Article  Google Scholar 

  15. M.C. Vanderveen, A.J. Vanderveen, A. Paulraj, Estimation of multipath parameters in wireless communications. IEEE Trans. Signal Process. 46(3), 682–690 (1998)

    Article  Google Scholar 

  16. M. Wax, The joint estimation of differential delay, doppler, and phase. IEEE Trans. Inf. Theory 28(5), 817–820 (1982)

    Article  MATH  Google Scholar 

  17. R. Yang, P. Shi, G.P. Liu, Network-based feedback control for systems with mixed delays based on quantization and dropout compensation. Automatica 47(12), 2805–2809 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers, Editor-in-Chief and Associate Editor for their help in improving the presentation of the paper. This work was sponsored in part by the Natural Science Foundation of China (NSFC) (Grant Nos: 61401043, 61403039 and 11302093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-hong You or Zhao-feng Wang.

Appendices

Appendix 1

The derivation of (11) is following:

$$\begin{aligned} \hbox {DFT}(s(n))= & {} S(k) \end{aligned}$$
(36)
$$\begin{aligned} \hbox {DFT}(s(n)e^{{j2\pi nD_f }/N})= & {} S(k-D_f )\end{aligned}$$
(37)
$$\begin{aligned} \hbox {DFT}(s(n-D_t ))= & {} S(k)e^{{-j2\pi kD_t }/N} \end{aligned}$$
(38)

Define \({n}'=n-D_t \)

$$\begin{aligned} \hbox {DFT}(s({n}'))={S}'(k)=S(k)e^{{-j2\pi kD_t }/N} \end{aligned}$$
(39)

Based on the above results, it leads to

$$\begin{aligned} \hbox {DFT}(s(n-D_t )e^{{j2\pi nD_f }/N})= & {} \hbox {DFT}(s({n}')e^{{j2\pi {n}'D_f }/N}e^{{j2\pi D_t D_f }/N})\nonumber \\= & {} e^{{j2\pi D_t D_f }/N}\hbox {DFT}(s({n}')e^{{j2\pi {n}'D_f }/N}) \nonumber \\= & {} e^{{j2\pi D_t D_f }/N}{S}'(k-D_f )\nonumber \\= & {} e^{{j2\pi D_t D_f }/N}S(k-D_f )e^{{-j2\pi (k-D_f )D_t }/N} \nonumber \\= & {} S(k-D_f )e^{{-j2\pi (k-2D_f )D_t }/N} \end{aligned}$$
(40)

The cross-power spectrum density between the two signals is

$$\begin{aligned} P_{xy} (k)=\lambda S^{{*}}(k)S(k-D_f )e^{{-j2\pi D_t (k-2D_f )}/N}+W_p (k),\;D_f ={\Delta f_0 N}/{f_s }, \end{aligned}$$
(41)

where \(N\) denotes the length of \(P_{xy} (k)\) and \(W_p (k)=\lambda S(k-D_f )e^{{-j2\pi D_t (k-2D_f )}/N}W_1^{*} (k)+S^{{*}}(k)W_2 (k)+W_1^{*} (k)W_2 (k)\).

Appendix 2

We define \(A_c (n)=a(n)\cos \varphi _1 (n)\) and \(A_s (n)=a(n)\sin \varphi _1 (n)\)

$$\begin{aligned} H\left[ {A_c (n)\cos (\omega _0 n)} \right] =A_c (n)\sin (\omega _0 n) \end{aligned}$$
(42)
$$\begin{aligned} H\left[ {A_s (n)\sin (\omega _0 n)} \right]= & {} -A_s (n)\cos (\omega _0 n) \end{aligned}$$
(43)
$$\begin{aligned} x(n)= & {} a(n)\cos (\omega _0 n+\varphi _1 (n))+w_1 (n) \nonumber \\= & {} a(n)\cos (\varphi _1 (n))\cos (\omega _0 n)\!-\!a(n)\sin (\varphi _1 (n))\sin (\omega _0 n)\!+\!w_1 (n) \nonumber \\= & {} A_c (n)\cos (\omega _0 n)-A_s (n)\sin (\omega _0 n)+w_1 (n) \end{aligned}$$
(44)
$$\begin{aligned} H[x(n)]= & {} H\left[ {A_c (n)\cos (\omega _0 n)} \right] -H\left[ {A_s (n)\sin (\omega _0 n)} \right] +H\left[ {w_1 (n)} \right] \nonumber \\= & {} A_c (n)\sin \omega _0 n+A_s (n)\cos \omega _0 n+H[w_1 (n)] \nonumber \\= & {} a(n)\sin (\omega _0 n+\varphi _1 (n))+H[w_1 (n)], \end{aligned}$$
(45)

where \(H[\cdot ]\) stands for Hilbert Transform. Based on the above results, it leads to

$$\begin{aligned} a(n)=\sqrt{x^{2}(n)+H^{2}[x(n)]-w_x (n)}, \end{aligned}$$
(46)

where \(w_x (n)=w_1^2 (n)+H^{2}[w_1 (n)]+2\left\{ {w_1 (n)s_1 (n)+H[w_1 (n)]H[s_1 (n)]} \right\} \). Similarly, we have

$$\begin{aligned} a(n-D_t )=\sqrt{y^{2}(n)+H^{2}[y(n)]-w_y (n)}, \end{aligned}$$
(47)

where \(w_y (n)=w_2^2 (n)+H^{2}[w_2 (n)]+2\left\{ {w_2 (n)s_2 (n)+H[w_2 (n)]H[s_2 (n)]} \right\} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, Gh., Wang, Zf., Qiu, Ts. et al. An Effective Time Delay Estimation Method Based on Frequency Difference Compensation for Narrowband RF Signals. Circuits Syst Signal Process 35, 325–338 (2016). https://doi.org/10.1007/s00034-015-0066-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0066-9

Keywords

Navigation