Skip to main content
Log in

New Results on Decentralized \({\fancyscript{H}}_{\infty }\) Fuzzy Filtering Design for Continuous-Time Large-Scale Nonlinear Systems with Time-Varying Delay

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper studies the problem of decentralized \({\fancyscript{H}}_{\infty }\) fuzzy filtering design for a class of continuous-time large-scale nonlinear systems with time-varying delay. The considered large-scale system consists of several nonlinear subsystems with interconnections and state delays. Each nonlinear subsystem is represented by a Takagi–Sugeno (T–S) model, and the state delay of each subsystem is assumed to be of an interval-like time-varying form. Attention is focused on designing a decentralized fuzzy filter such that the resulting filtering error system is asymptotically stable with a guaranteed \({\fancyscript{H}}_{\infty }\) disturbance attenuation level. We firstly propose a two-term approximation method to transform the filtering error system into an interconnected formulation and reformulate the problem of decentralized \({\fancyscript{H}}_{\infty }\) fuzzy filtering design in the context of input–output (IO) stability. Then, based on a Lyapunov–Krasovskii functional (LKF) combined with the scaled small gain (SSG) theorem, less conservative results are presented for the decentralized \({\fancyscript{H}}_{\infty }\) fuzzy filtering design in terms of linear matrix inequalities (LMIs). Finally, two examples are provided to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Bakule, Decentralized control: status and outlook. Annu. Rev. Control 38(1), 71–80 (2014)

    Article  Google Scholar 

  2. H. Gao, Y. Zhao, J. Lam, K. Chen, \({\fancyscript {H}}_{\infty }\) fuzzy filtering of nonlinear systems with intermittent. IEEE Trans. Fuzzy Syst. 17(2), 291–300 (2009)

    Article  Google Scholar 

  3. H. Gao, C. Wang, A delay-dependent approach to robust \({\fancyscript {H}}_{\infty }\) filtering for uncertain discrete-time state delayed systems. IEEE Trans. Signal Process. 52(6), 1631–1640 (2004)

    Article  MathSciNet  Google Scholar 

  4. H. Gao, Z. Wang, C. Wang, Improved \({\fancyscript {H}}_{\infty }\) control of discrete-time fuzzy systems: a cone complementarity linearization approach. Inf. Sci. 175(1–2), 57–77 (2005)

    Article  MATH  Google Scholar 

  5. K. Gu, Y. Zhang, S. Xu, Small gain problem in coupled differential-difference equations, time-varying delays, and direct Lyapunov method. Int. J. Robust Nonlinear Control 21(4), 429–451 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Gu, An integral inequality in the stability problem of time-delay systems, in Proceedings of the 2000 IEEE Conference on Decision and Control, pp. 2805–2810, 2000

  7. C. Hua, S. Ding, Decentralized networked control system design using T–S fuzzy approach. IEEE Trans. Fuzzy Syst. 20(1), 9–21 (2012)

    Article  MathSciNet  Google Scholar 

  8. F. Hsiao, J.H. Wang, C. Chen, Z. Tsai, Robust stabilization of nonlinear multiple time-delay large-scale systems via decentralized fuzzy control. IEEE Trans. Fuzzy Syst. 13(1), 152–163 (2005)

    Article  Google Scholar 

  9. X. Jiang, Q. Han, X. Yu, Stability criteria for linear discrete-time systems with interval-like time-varying delay, in Proceedings of the 2005 IEEE Conference on American Control, vol. 4, pp. 2817–2822, 2005

  10. D. Liu, D. Wang, H. Li, Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 418–428 (2014)

    Article  MathSciNet  Google Scholar 

  11. F. Liu, J. Huang, Y. Shi, D. Xu, Fault detection for discrete-time systems with randomly occurring nonlinearity and data missing: a quadrotor vehicle example. J. Franklin Inst. 350(9), 2474–2493 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Li, Y. Pan, Q. Zhou, Filter design for interval type-2 fuzzy systems with D stability constraints under a unified frame. IEEE Trans. Cybern. doi:10.1109/TFUZZ.2014.2315658

  13. H. Li, B. Chen, Q. Zhou, W. Qian, Robust stability for uncertain delayed fuzzy hopfield neural networks with Markovian jumping parameters. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39(1), 94–102 (2009)

    Article  Google Scholar 

  14. M. Liu, X. Liu, Y. Shi, S. Wang, T-S fuzzy-model-based \({\fancyscript {H}}_{2}\) and \({\fancyscript {H}}_{\infty }\) filtering for networked control systems with two-channel Markovian random delays. Digit. Signal Proc. 27, 167–174 (2014)

    Article  Google Scholar 

  15. M. Mahmoud, A. Qureshi, Decentralized sliding-mode output-feedback control of interconnected discrete-delay systems. Automatica 48(5), 808–814 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Mao, H. Zhang, Y. Qin, C. Dang, Stability and constrained control of a class of discrete-time fuzzy positive systems with time-varying delays. Circuit Syst. Signal Process. 32(2), 889–904 (2013)

    Article  MathSciNet  Google Scholar 

  17. J. Qiu, G. Feng, H. Gao, Fuzzy-model-based piecewise \({\fancyscript {H}}_{\infty }\) static-output-feedback controller design for networked nonlinear systems. IEEE Trans. Fuzzy Syst. 18(5), 919–934 (2010)

    Article  Google Scholar 

  18. J. Qiu, G. Feng, J. Yang, New results on robust \({\fancyscript {H}}_{\infty }\) filtering design for discrete-time piecewise linear delay systems. Int. J. Control 82(1), 183–194 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Qiu, G. Feng, H. Gao, Static-output-feedback \({{H}}_{\infty }\) control of continuous-time T–S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21(2), 245–261 (2013)

    Article  Google Scholar 

  20. J. Qiu, G. Feng, H. Gao, Observer-based piecewise affine output feedback controller synthesis of continuous-time T–S fuzzy affine dynamic systems using quantized measurements. IEEE Trans. Fuzzy Syst. 20(6), 1046–1062 (2012)

    Article  Google Scholar 

  21. J. Qiu, H. Tian, Q. Lu, H. Gao, Nonsynchronized robust filtering design for continuous-time T–S fuzzy affine dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Cybern. 43(6), 1755–1766 (2013)

    Article  Google Scholar 

  22. J. Qiu, G. Feng, J. Yang, Improved delay-dependent \({{H}}_{\infty }\) filtering design for discrete-time polytopic linear delay systems. IEEE Trans. Circuit Syst. II 55(2), 178–182 (2008)

    Article  Google Scholar 

  23. J. Qiu, G. Feng, H. Gao, Nonsynchronized-state estimation of multichannel networked nonlinear systems with multiple packet dropouts via T–S fuzzy-affine dynamic models. IEEE Trans. Fuzzy Syst. 19(1), 75–90 (2011)

    Article  Google Scholar 

  24. J. Qiu, G. Feng, J. Yang, A new design of delay-dependent robust \({{H}}_{\infty }\) filtering for discrete-time T–S fuzzy systems with time-varying delay. IEEE Trans. Fuzzy Syst. 17(5), 1044–1058 (2009)

    Article  Google Scholar 

  25. J. Qiu, Y. Wei, H.R. Karimi, New approach to delay-dependent \({\fancyscript {H}}_{\infty }\) control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions. J. Franklin Inst. 352(1), 189–215 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Siljak, Large-Scale Dynamic Systems: Stability and Structure (Elsevier, New York, 1978)

    MATH  Google Scholar 

  27. P. Shi, X. Luan, C. Liu, \({{H}}_{\infty }\) filtering for discrete-time systems with stochastic incomplete measurement and mixed delays. IEEE Trans. Ind. Electron. 59(6), 2732–2739 (2012)

    Article  Google Scholar 

  28. X. Su, P. Shi, L. Wu, Y. Song, A novel approach to filter design for T–S fuzzy discrete-time systems with time-varying delay. IEEE Trans. Fuzzy Syst. 20(6), 1114–1129 (2012)

    Article  Google Scholar 

  29. Y. Shi, B. Yu, Robust mixed \({\fancyscript {H}}_{2} /{\fancyscript {H}}_{\infty }\) control of networked control systems with random time delays in both forward and backward communication links. Automatica 47(4), 754–760 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Y. Shi, B. Yu, Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Trans. Autom. Control 54(7), 1668–1674 (2009)

    Article  MathSciNet  Google Scholar 

  31. Y. Shi, J. Huang, B. Yu, Robust tracking control of networked control systems: application to a networked DC motor. IEEE Trans. Ind. Electron. 60(12), 5864–5874 (2013)

    Article  Google Scholar 

  32. Y. Shi, T. Chen, Optimal design of multichannel transmultiplexers with stopband energy and passband magnitude constraints. IEEE Trans. Circuit. Syst. II Analog Digit. Signal Process. 50(9), 659–662 (2003)

    Article  Google Scholar 

  33. Y. Shi, H. Fang, Kalman filter-based identification for systems with randomly missing measurements in a network environment. Int. J. Control 83(3), 538–551 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. N. Thanh, V. Phat, Decentralized \({\fancyscript {H}}_{\infty }\) control for large-scale interconnected nonlinear time-delay systems via LMI approach. J. Process Control 22(7), 1325–1339 (2012)

    Article  Google Scholar 

  35. T. Tanaka, H.O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach (Wiley, New York, 2001)

    Book  Google Scholar 

  36. Y. Tang, F. Qian, H.J. Gao, J. Kurths, Synchronization in complex networks and its application—a survey of recent advances and challenges. Annu. Rev. Control 38(2), 184–198 (2014)

    Article  Google Scholar 

  37. H. Wu, Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the interconnections. IEEE Trans. Autom. Control 47(10), 1745–1751 (2002)

    Article  Google Scholar 

  38. T. Wang, H. Gao, J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. doi:10.1109/TNNLS.2015.2411671

  39. Y. Wei, J. Qiu, H.R. Karimi, M. Wang, A new design of \({\fancyscript {H}}_{\infty }\) filtering for continuous-time Markovian jump systems with time-varying delay and partially accessible mode information. Sig. Process. 93(9), 2392–2407 (2013)

    Article  Google Scholar 

  40. S. Xie, L. Xie, Stabilization of a class of uncertain large-scale stochastic systems with time delays. Automatica 36(1), 161–167 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. G. Yu, H. Zhang, Q. Huang, C. Dang, New delay-dependent stability analysis for fuzzy time-delay interconnected systems. Int. J. Gen. Syst. 42(7), 739–753 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  42. C. Zhang, G. Feng, J. Qiu, Y. Shen, Control synthesis for a class of linear network-based systems with communication constraints. IEEE Trans. Ind. Electron. 60(8), 3339–3348 (2013)

    Article  Google Scholar 

  43. H. Zhang, Y. Shi, J. Wang, On energy-to-peak filtering for nonuniformly sampled nonlinear systems: a Markovian jump system approach. IEEE Trans. Fuzzy Syst. 22(1), 212–222 (2014)

    Article  MathSciNet  Google Scholar 

  44. H. Zhang, Y. Shi, M. Liu, \({\fancyscript {H}}_{\infty }\) switched filtering for networked systems based on delay occurrence probabilities. J. Dyn. Syst. Meas. Contr. 135(6), 061002 (2013)

    Article  MathSciNet  Google Scholar 

  45. H. Zhang, H. Zhong, C. Dang, Delay-dependent decentralized \({\fancyscript {H}}_{\infty }\) filtering for discrete-time nonlinear interconnected systems with time-varying delay based on the T-S fuzzy model. IEEE Trans. Fuzzy Syst. 20(3), 431–443 (2012)

    Article  Google Scholar 

  46. H. Zhang, G. Yu, C. Zhou, C. Dang, Delay-dependent decentralized \({{H}}_{\infty }\) filtering for fuzzy interconnected systems with time-varying delay based on Takagi-Sugeno fuzzy model. IET Control Appl. 7(5), 720–729 (2013)

    Article  MathSciNet  Google Scholar 

  47. H. Zhang, Y. Shi, A.S. Mehr, On \({{H}}_{\infty }\) filtering for discrete-time Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 20(2), 396–401 (2012)

    Article  Google Scholar 

  48. J. Zhang, C.R. Knopse, P. Tsiotras, Stability of time-delay systems: equivalence between Lyapunov and scaled small-gain conditions. IEEE Trans. Autom. Control 46(3), 482–486 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Editor-in-Chief, the Associate Editor, and anonymous reviewers for their constructive comments which helped to greatly improve the presentation of this paper. The authors would also like to thank Prof. Huijun Gao and Prof. Jianbin Qiu from Harbin Institute of Technology for the helpful discussions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Zhong.

Additional information

This work was supported by the Self-Planned Task (NO. SKLRS201402C) of State Key Laboratory of Robotics and Systems (HIT), the National Natural Science Foundation of China (61374031), the Program for New Century Excellent Talents in University (NCET-12-0147), the Harbin Special Funds for Technological Innovation Research (2014RFQXJ067) and the Alexander von Humboldt Foundation of Germany.

Appendix

Appendix

Lemma 4

[6] For any constant positive symmetric matrix \(M\in \mathfrak {R}^{n\times n},M^{T}=M>0,\) scalars \(d_{2}>d_{1}\ge 0,\) the following inequality holds

$$\begin{aligned} \left( \int _{d_{1}}^{d_{2}}x\left( t\right) \mathrm{d}t\right) ^{T}M\left( \int _{d_{1}}^{d_{2}}x\left( t\right) \mathrm{d}t\right) \le \left( d_{2} -d_{1}\right) \int _{d_{1}}^{d_{2}}x^{T}\left( t\right) Mx\left( t\right) \mathrm{d}t. \end{aligned}$$

Lemma 5

[9] For any constant positive semidefinite symmetric matrix \(W\in \mathfrak {R}^{n\times n},W^{T}=W\ge 0,\) two positive integers \(n_{2}\) and \(n_{1}\) satisfying \(n_{2}\ge n_{1}\ge 1,\) the following inequality holds

$$\begin{aligned} \left( \sum \limits _{k=n_{1}}^{n_{2}}x\left( k\right) \right) ^{T}W\left( \sum \limits _{k=n_{1}}^{n_{2}}x\left( k\right) \right) \le \left( n_{2}-n_{1}+1\right) \sum \limits _{k=n_{1}}^{n_{2}}x^{T}\left( k\right) Wx\left( k\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Z., Sun, G., Yu, J. et al. New Results on Decentralized \({\fancyscript{H}}_{\infty }\) Fuzzy Filtering Design for Continuous-Time Large-Scale Nonlinear Systems with Time-Varying Delay. Circuits Syst Signal Process 35, 527–552 (2016). https://doi.org/10.1007/s00034-015-0081-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0081-x

Keywords

Navigation