Skip to main content
Log in

A New Method for Chebyshev Polynomial Interpolation Based on Cosine Transforms

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Interpolation plays an important role in the areas of signal processing and applied mathematics. Among the various interpolation methods, those related to Chebyshev polynomial interpolation have received much interest recently. In this paper, we propose a new interpolation method using a type I discrete cosine transform (type I DCT) and the nonuniform roots of the second type of Chebyshev polynomials. In this method, the interpolation coefficients are derived using the type I DCT of the Chebyshev nonuniform sampling points. Simulations show the correctness of the proposed method, and a comparison of the proposed method with existing methods is also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Adcock, A.C. Hansen, A. Shadrin, A stability barrier for reconstructions from Fourier samples. SIAM J. Numer. Anal. 52(1), 125–139 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. J.I. Agbinya, Interpolation using the discrete cosine transform. Electron. Lett. 28(20), 1928 (1992)

    Article  Google Scholar 

  3. M. Berzins, Adaptive polynomial interpolation on evenly spaced meshes. SIAM Rev. 49(4), 604–627 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. R.L. Burden, J.D. Faires, Numerical Analysis (Brooks Cole, Boston, 2010)

    Google Scholar 

  5. E.W. Cheney, Approximation Theory III (Academic Press Inc., New York, 1980)

    MATH  Google Scholar 

  6. A. Dutt, M. Gu, V. Rokhlin, Fast algorithms for polynomial interpolation, integration, and differentiation. SIAM J. Numer. Anal. 33(5), 1689–1711 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Fax, I.B. Parker, Chebyshev Polynomials in Numerical Analysis (Oxford University Press, London, 1968)

    Google Scholar 

  8. K. Glashoff, K. Roleff, A new method for Chebyshev approximation of complex-valued functions. Math. Comput. 36(153), 233–239 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. M.A. Hernandez, Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41(3), 433–445 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. M.F. Huber, Chebyshev polynomial Kalman filter. Digit. Signal. Process. 23(5), 1620–1629 (2013)

    Article  MathSciNet  Google Scholar 

  11. C.P. Li, B.Z. Li, T.Z. Xu, Approximating bandlimited signals associated with the LCT domain from nonuniform samples at unknown locations. Signal Process. 92(7), 1658–1664 (2012)

    Article  Google Scholar 

  12. B.Z. Li, T.Z. Xu, Spectral analysis of sampled signals in the linear canonical transform domain. Math. Probl. Eng. 2012, 1–19 (2012)

    MATH  Google Scholar 

  13. P.S. Malachivskyy, Y.V. Pizyur, N.V. Danchak, E.B. Orazov, Chebyshev approximation by exponential-power expression. Cybern. Syst. Anal. 49(6), 877–881 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. Mao, Z. Yu, Interpolation using the type I discrete cosine transform with greatly increased accuracy. Electron. Lett. 31(2), 85–86 (1995)

    Article  Google Scholar 

  15. I.I. Marks, J. Robert, Introduction to Shannon Sampling and Interpolation Theory (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  16. P.P. Massopust, Interpolation and Approximation with Splines and Fractals (Oxford University Press, London, 2010)

    MATH  Google Scholar 

  17. V.E. Neagoe, A two-dimensional nonuniform sampling expansion model. Signal Process. 33(1), 1–21 (1993)

    Article  MATH  Google Scholar 

  18. V.E. Neagoe, Chebyshev nonuniform sampling cascaded with the discrete cosine transform for optimum interpolation. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1812–1815 (1990)

    Article  MATH  Google Scholar 

  19. D. Potts, M. Tasche, Sparse polynomial interpolation in Chebyshev bases. Linear Algebra Appl. 441, 61–87 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Puschel, J.F. Moura, Algebric signal processing theory. ArXiv preprint. cs/0612077(2006)

  21. M. Puschel, J.F. Moura, Algebraic signal processing theory: foundation and 1-D time. IEEE Trans. Signal Process. 56(8), 3572–3585 (2008)

    Article  MathSciNet  Google Scholar 

  22. M. Puschel, J.F. Moura, Algebraic signal processing theory: 1-D space. IEEE Trans. Signal Process. 56(8), 3586–3599 (2008)

    Article  MathSciNet  Google Scholar 

  23. T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory (Wiley, New York, 1990)

    MATH  Google Scholar 

  24. L.A. Sakhnovich, Interpolation Theory and Its Applications (Springer, New York, 1997)

    Book  MATH  Google Scholar 

  25. G. Strang, The discrete cosine transform. SIAM Rev. 41(1), 135–147 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. L.N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. L.N. Trefethen, Approximation Theory and Approximation Practice (Society for Industrial and Applied Mathematics, Philadelphia, 2013)

    MATH  Google Scholar 

  28. H. Triebel, Interpolation Theory, Tunction Spaces, Differential Operators (Wiley-VCH, Johann Ambrosius Barth, Heidelberg, 1995)

    Google Scholar 

  29. Z. Wang, Interpolation using type I discrete cosine transform. Electron. lett. 26(15), 1170–1172 (1990)

    Article  Google Scholar 

  30. Z. Wang, Interpolation using the discrete cosine transform: reconsideration. Electron. Lett. 29(2), 198–200 (1993)

    Article  Google Scholar 

  31. Z. Wang, G.A. Jullien, W.C. Miller, Fast computation of Chebyshev optimal nonuniform interpolation. Proceedings of the 38th Midwest Symposium on Circuits and Systems. 1, 111–114 (1995)

  32. Z. Wang, L. Wang, Interpolation using the fast discrete sine transform. Signal Process. 26(1), 131–137 (1992)

    Article  MATH  Google Scholar 

  33. T.Z. Xu, B.Z. Li, Linear Canonical Transform and its Applications (Science Press, Beijing, 2013)

    Google Scholar 

  34. A. Zakhor, G. Alvstad, Two-dimensional polynomial interpolation from nonuniform samples. IEEE Trans. Signal Process. 40(1), 169–180 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the academic editor and anonymous reviewers for their valuable comments and suggestions. The authors would also like to thank Prof. Huafei Sun and Dr. Didar of the Beijing Institute of Technology for many discussions about and proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Zhao Li.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 61171195), the Program for New Century Excellent Talents in University (No. NCET-12-0042), and also supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61421001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BZ., Zhang, YL., Wang, X. et al. A New Method for Chebyshev Polynomial Interpolation Based on Cosine Transforms. Circuits Syst Signal Process 35, 719–729 (2016). https://doi.org/10.1007/s00034-015-0087-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0087-4

Keywords

Navigation