Skip to main content
Log in

Low Voltage High Output Impedance Bulk-Driven Quasi-Floating Gate Self-Biased High-Swing Cascode Current Mirror

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A low voltage self-biased high-swing cascode current mirror using bulk-driven quasi-floating gate MOSFET is proposed in this paper. The proposed current mirror bandwidth and especially the output impedance show a significant improvement compared to prior arts. The current mirror presented is designed using bulk-driven and bulk-driven quasi-floating gate N-channel MOS transistors, which helped it to operate at very low supply voltage of \({\pm }0.2\,\hbox {V}\). To achieve high output resistance, the current mirror uses regulated cascode stage followed by super cascode architecture. The small-signal analysis carried out proves the improvement achieved by proposed current mirror. The current mirror circuit operates well for input current ranging from 0 to \(250\,{\upmu }\mathrm{A}\) with good linearity and shows the bandwidth of 285 MHz. The input and output resistances are found as \(240\,\Omega \) and \(19.5\,\hbox {G}\Omega \), respectively. Further, the THD analysis and Monte Carlo simulations carried prove the robustness of proposed current mirror. The complete analysis is done using HSpice on UMC \(0.18\,\upmu \mathrm{m}\) technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design, 2nd edn. (Oxford University Press, Oxford, 2002)

    Google Scholar 

  2. B. Aggarwal, M. Gupta, A.K. Gupta, Analysis of low voltage bulk-driven self-biased high swing cascode current mirror. Microelectron. J. 44(3), 225–235 (2013). doi:10.1016/j.mejo.2012.12.006

    Article  MathSciNet  Google Scholar 

  3. S.J. Azhari, K. Monfaredi, S. Amiri, A 12-bit, low voltage, nano ampere based, ultra low power, ultra low glitch current steering DAC for HDTV. Int. Nano Lett. 2(1), 1–7 (2012). doi:10.1186/2228-5326-2-35

    Article  Google Scholar 

  4. J.M. Carrillo, G. Torelli, R. Pérez-Aloe, J.F. Duque-Carrillo, 1-V rail-to-rail CMOS op amp with improved bulk-driven input stage. IEEE J. Solid-State Circuits 42, 508 (2007). doi:10.1109/JSSC.2006.891717

    Article  Google Scholar 

  5. F. Esparza-Alfaro, A.J. Lopez-Martin, J. Ramirez-Angulo, R.G. Carvajal, High-performance micropower class AB current mirror. Electron. Lett. 48(14), 823–824 (2012). doi:10.1049/el.2011.3863

    Article  Google Scholar 

  6. F. Esparza-Alfaro, A.J. Lopez-Martin, J. Ramirez-Angulo, R.G. Carvajal, Low-voltage highly-linear class AB current mirror with dynamic cascode biasing. Electron. Lett. 48(21), 1336–1338 (2012). doi:10.1049/el.2012.3081

    Article  Google Scholar 

  7. F. Esparza-Alfaro, A.J. Lopez-Martin, R.G. Carvajal, J. Ramirez-Angulo, Highly linear micropower class AB current mirrors using quasi-floating gate transistors. Microelectron. J. 45(10), 1261–1267 (2014). doi:10.1016/j.mejo.2014.02.006

    Article  Google Scholar 

  8. C.J.B. Fayomi, M. Sawan, G.W. Roberts, Reliable circuit techniques for low-voltage analog design in deep submicron standard CMOS: a tutorial. Analog Integr. Circuits Signal Process. 39, 21–38 (2004). doi:10.1023/B:ALOG.0000016641.83563.96

    Article  Google Scholar 

  9. A. Guzinski, M. Bialko, J.C. Matheau, Body driven differential amplifier for application in continuous-time active C-filter. In Proceedings ECCD, Paris, France (1987), pp. 315–319

  10. R. Gupta, S. Sharma, Quasi-floating gate MOSFET based low voltage current mirror. Microelectron. J. 43(7), 439–443 (2012). doi:10.1016/j.mejo.2012.04.006

    Article  Google Scholar 

  11. F. Khateb, S.B.A. Dabbous, S. Vlassis, A survey of non-conventional techniques for low-voltage low-power analog circuit design. Radioengineering 22(2), 415–427 (2013)

    Google Scholar 

  12. F. Khateb, S. Vlassis, Low-voltage bulk-driven rectifier for biomedical applications. Microelectron. J. 44(8), 642–648 (2013). doi:10.1016/j.mejo.2013.04.009

    Article  Google Scholar 

  13. F. Khateb, M. Kumngern, S. Vlassis, C. Psychalinos, Differential difference current conveyor using bulk-driven technique for ultra-low-voltage applications. Circuits Syst. Signal Process. 33(1), 159–176 (2014). doi:10.1007/s00034-013-9619-y

    Article  Google Scholar 

  14. F. Khateb, F. Kacar, N. Khatib, D. Kubanek, High-precision differential-input buffered and external transconductance amplifier for low-voltage low-power applications. Circuits Syst. Signal Process. 32(2), 453–476 (2013). doi:10.1007/s00034-012-9470-6

    Article  MathSciNet  Google Scholar 

  15. F. Khateb, D. Biolek, Bulk-driven current differencing transconductance amplifier. Circuits Syst. Signal Process. 30(5), 1071–1089 (2011). doi:10.1007/s00034-010-9254-9

    Article  Google Scholar 

  16. T. Kulej, F. Khateb, Bulk-driven adaptively biased OTA in 0.18 \(\upmu \)m CMOS. Electron. Lett. 51(6), 458–460 (2015). doi:10.1049/el.2014.4437

    Article  Google Scholar 

  17. T. Kulej, F. Khateb, 0.4-V bulk-driven differential-difference amplifier. Microelectron. J. 46(5), 362–369 (2015). doi:10.1016/j.mejo.2015.02.009

    Article  Google Scholar 

  18. F. Khateb, Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage low-power analog circuits design. AEU Int. J. Electron. Commun. 68(1), 64–72 (2014). doi:10.1016/j.aeue.2013.08.019

    Article  Google Scholar 

  19. F. Khateb, The experimental results of the bulk-driven quasi-floating-gate MOS transistor. AEU Int. J. Electron. Commun. 69(1), 462–466 (2015). doi:10.1016/j.aeue.2014.10.016

    Article  Google Scholar 

  20. F. Khateb, N. Khateb, P. Prommee, W. Jaikla, L. Fujcik, Ultra-low voltage tunable transconductor based on bulk-driven quasi-floating-gate technique. Circuits Syst. Comput. 22(8), 1350073-1–1350073-13 (2013). doi:10.1142/S0218126613500734

    Google Scholar 

  21. F. Khateb, W. Jaikla, M. Kumngern, P. Prommee, Comparative study of sub-volt differential difference current conveyors. Microelectron. J. 44(12), 1278–1284 (2013). doi:10.1016/j.mejo.2013.08.015

    Article  Google Scholar 

  22. F. Khateb, M. Kumngern, S. Vlassis, C. Psychalinos, T. Kulej, Sub-volt fully balanced differential difference amplifier. Circuits Syst. Comput. 24(1), 1550005-1/18 (2015). doi:10.1142/S021812661550005X

    Google Scholar 

  23. F. Khateb, S. Vlassis, M. Kumngern, C. Psychalinos, T. Kulej, R. Vrba, L. Fujcik, 1 V rectifier based on bulk-driven quasi-floating-gate differential difference amplifiers. Circuits Syst. Signal Process. 1–13 (2014). doi:10.1007/s00034-014-9958-3

  24. F. Khateb, A. Lahiri, C. Psychalinos, M. Kumngern, T. Kulej, Digitally programmable low-voltage highly linear transconductor based on promising CMOS structure of differential difference current conveyor. AEU Int. J. Electron. Commun. (2015). doi:10.1016/j.aeue.2015.03.005

  25. T. Kulej, 0.5-V bulk-driven CMOS operational amplifier. Circuits Devices Syst. 7(6), 352–360 (2013). doi:10.1049/iet-cds.2012.0372

    Article  Google Scholar 

  26. Z. Liang, S.K. Islam, Low-voltage bulk-driven operational amplifier with improved transconductance. IEEE Trans. Circuits Syst. I Regul. Pap. 60(8), 2084–2091 (2013). doi:10.1109/TCSI.2013.2239161

    Article  Google Scholar 

  27. J.M.A. Miguel, A.J. Lopez-Martin, L. Acosta, J. Ramirez-Angulo, R.G. Carvajal, Using floating gate and quasi-floating gate techniques for rail-to-rail tunable CMOS transconductor design. IEEE Trans. Circuits Syst. I Regul. Pap. 58(7), 1604–1614 (2011). doi:10.1109/TCSI.2011.2157782

    Article  MathSciNet  Google Scholar 

  28. K. Monfaredi, H. Faraji Baghtash, S.J. Azhari, A novel ultra low power low voltage femto-ampere current mirror. Circuits Syst. Signal Process. 31(3), 833–847 (2012). doi:10.1007/s00034-011-9352-3

    Article  Google Scholar 

  29. J. Rosenfeld, M. Kozak, E.G. Friedman, A bulk-driven CMOS OTA with 68 dB DC gain. In Proceedings of the 11th IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2004), pp. 5–8. doi:10.1109/ICECS.2004.1399600

  30. F. Rezaei, S.J. Azhari, Ultra low voltage, high performance operational transconductance amplifier and its application in a tunable Gm-C filter. Microelectron. J. 42(6), 827–836 (2011). doi:10.1016/j.mejo.2011.04.012

    Article  Google Scholar 

  31. G. Raikos, S. Vlassis, C. Psychalinos, 0.5V bulk-driven analog building blocks. AEU Int. J. Electron. Commun. 66(11), 920–927 (2012). doi:10.1016/j.aeue.2012.03.015

    Article  Google Scholar 

  32. N. Raj, R.K. Sharma, Modelling of human voice box in VLSI for low power biomedical applications. IETE J. Res. 57(4), 345–353 (2011). doi:10.4103/0377-2063.86337

    Article  Google Scholar 

  33. N. Raj, A.K. Singh, A.K. Gupta, Low power high output impedance high bandwidth QFGMOS current mirror. Microelectron. J. 45(8), 1132–1142 (2014). doi:10.1016/j.mejo.2014.05.005

    Article  Google Scholar 

  34. N. Raj, A.K. Singh, A.K. Gupta, Low-voltage bulk-driven self-biased cascode current mirror with bandwidth enhancement. Electron. Lett. 50(1), 23–25 (2014). doi:10.1049/el.2013.3600

    Article  Google Scholar 

  35. A. Suadet, V. Kasemsuwan, A compact class-AB bulk-driven quasi-floating gate current mirror for low voltage applications. In Proceedings 13th International Symposium on Communications and Information Technologies (ISCIT) (2013), pp. 298–302. doi:10.1109/ISCIT.2013.6645868

  36. E. Sackinger, W. Guggenbuhl, A high-swing, high-impedance MOS cascode circuit. IEEE J. Solid State Circuits 25(1), 289–298 (1990). doi:10.1109/4.50316

    Article  Google Scholar 

  37. G. Tsirimokou, C. Psychalinos, Realization of current-mirror filters with large time-constants. AEU Int. J. Electron. Commun. 1434–8411 (2014). doi:10.1016/j.aeue.2014.07.007

  38. A. Torralba, R.G. Carvajal, J. Ramirez-Angulo, E. Munoz, Output stage for low supply voltage high-performance CMOS current mirrors. Electron. Lett. 38(24), 1528–1529 (2002). doi:10.1049/el:20021062

    Article  Google Scholar 

  39. S. Vlassis, F. Khateb, Automatic tuning circuit for bulk-controlled sub-threshold MOS resistors. Electron. Lett. 50(6), 432–434 (2014). doi:10.1049/el.2013.4181

    Article  Google Scholar 

  40. Z. Xuguang, E.I. El-Masry, A regulated body-driven CMOS current mirror for low-voltage applications. IEEE Trans. Circuits Syst. II Express Briefs 51(10), 571–577 (2004). doi:10.1109/TCSII.2004.834536

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Raj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, N., Singh, A.K. & Gupta, A.K. Low Voltage High Output Impedance Bulk-Driven Quasi-Floating Gate Self-Biased High-Swing Cascode Current Mirror. Circuits Syst Signal Process 35, 2683–2703 (2016). https://doi.org/10.1007/s00034-015-0184-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0184-4

Keywords

Navigation