Skip to main content
Log in

Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the parameter estimation problem of a class of output nonlinear systems and propose a recursive least squares (RLS) algorithm for estimating the parameters of the nonlinear systems based on the model decomposition. The proposed algorithm has lower computational cost than the existing over-parameterization model-based RLS algorithm. The simulation results indicate that the proposed algorithm can effectively estimate the parameters of the nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.C. Agüero, G.C. Goodwin, P.M.J. Van den Hof, A virtual closed loop method for closed loop identification. Automatica 47(8), 1626–1637 (2011)

  2. M. Ahmadi, H. Mojallali, Identification of multiple-input single-output Hammerstein models using Bezier curves and Bernstein polynomials. Appl. Math. Model. 35(4), 1969–1982 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. E.W. Bai, A blind approach to the Hammerstein–Wiener model identification. Automatica 38(6), 967–979 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. E.W. Bai, An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Dehghan, M. Hajarian, Fourth-order variants of Newton’s method without second derivatives for solving non-linear equations. Eng. Comput. 29(4), 356–365 (2012)

    Article  Google Scholar 

  6. M. Dehghan, M. Hajarian, Analysis of an iterative algorithm to solve the generalized coupled Sylvester matrix equations. Appl. Math. Model. 35(7), 3285–3300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Ding, System Identification-New Theory and Methods (Science Press, Beijing, 2013)

    Google Scholar 

  8. F. Ding, System Identification-Performances Analysis for Identification Methods (Science Press, Beijing, 2014)

    Google Scholar 

  9. J. Ding, C.X. Fan, J.X. Lin, Auxiliary model based parameter estimation for dual-rate output error systems with colored noise. Appl. Math. Model. 37(6), 4051–4058 (2013)

    Article  MathSciNet  Google Scholar 

  10. J. Ding, J.X. Lin, Modified subspace identification for periodically non-uniformly sampled systems by using the lifting technique. Circuits Syst. Signal Process. 33(5), 1439–1449 (2014)

    Article  Google Scholar 

  11. F. Ding, X.P. Liu, G. Liu, Identification methods for Hammerstein nonlinear systems. Digit. Signal Process. 21(2), 215–238 (2011)

    Article  Google Scholar 

  12. F. Ding, K.P. Deng, X.M. Liu, Decomposition based Newton iterative identification method for a Hammerstein nonlinear FIR system with ARMA noise. Circuits Syst. Signal Process. 33(9), 2881–2893 (2014)

    Article  MathSciNet  Google Scholar 

  13. F. Ding, Y.J. Wang, J. Ding, Recursive least squares parameter estimation algorithms for systems with colored noise using the filtering technique and the auxiliary model. Digit. Signal Process. 37, 100–108 (2015)

    Article  Google Scholar 

  14. D. Fan, K. Lo, Identification for disturbed MIMO Wiener systems. Nonlinear Dyn. 55(1–2), 31–42 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. G.C. Goodwin, K.S. Sin, Adaptive Filtering Prediction and Control (Prentice Hall, Englewood Cliffs, 1984)

    MATH  Google Scholar 

  16. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore, 1996)

    MATH  Google Scholar 

  17. Y. Gu, F. Ding, J.H. Li, States based iterative parameter estimation for a state space model with multi-state delays using decomposition. Signal Process. 106, 294–230 (2015)

    Article  Google Scholar 

  18. A. Hagenblad, L. Ljung, A. Wills, Maximum likelihood identification of Wiener models. Automatica 44(11), 2697–2705 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Y.B. Hu, Iterative and recursive least squares estimation algorithms for moving average systems. Simul. Model. Pract. Theory 34, 12–19 (2013)

    Article  Google Scholar 

  20. P.P. Hu, F. Ding, Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle. Nonlinear Dyn. 73(1–2), 583–592 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Y.B. Hu, B.L. Liu, Q. Zhou, C. Yang, Recursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noises. Circuits Syst. Signal Process. 33(2), 655–664 (2014)

    Article  MathSciNet  Google Scholar 

  22. Y.B. Hu, B.L. Liu, Q. Zhou, A multi-innovation generalized extended stochastic gradient algorithm for output nonlinear autoregressive moving average systems. Appl. Math. Comput. 247, 218–224 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Y. Ji, X.M. Liu, Unified synchronization criteria for hybrid switching-impulsive dynamical networks. Circuits Syst. Signal Process. 34(5), 1499–1517 (2015)

    Article  MathSciNet  Google Scholar 

  24. Y. Ji, X.M. Liu et al., New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems. Nonlinear Dyn. 79(1), 1–9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.H. Li, Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration. Appl. Math. Lett. 26(1), 91–96 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. X.G. Liu, J. Lu, Least squares based iterative identification for a class of multirate systems. Automatica 46(3), 549–554 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Ljung, System Identification: Theory for the User, 2nd edn. (Prentice Hall, Englewood Cliffs, 1999)

    MATH  Google Scholar 

  28. Y.W. Mao, F. Ding, A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems. Digit. Signal Process. 46, 215–225 (2015)

  29. P. Qin, R. Nishii, Z.J. Yang, Selection of NARX models estimated using weighted least squares method via GIC-based method and l1-norm regularization methods. Nonlinear Dyn. 70(3), 1831–1846 (2012)

    Article  MathSciNet  Google Scholar 

  30. Y. Shi, T. Chen, Optimal design of multi-channel transmultiplexers with stopband energy and passband magnitude constraints. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 50(9), 659–662 (2003)

    Article  Google Scholar 

  31. Y. Shi, B. Yu, Robust mixed H-2/H-infinity control of networked control systems with random time delays in both forward and backward communication links. Automatica 47(4), 754–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Shi, B. Yu, Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Trans. Autom. Control 54(7), 1668–1674 (2009)

    Article  MathSciNet  Google Scholar 

  33. J. Vörös, Modelling and identification of Wiener systems with two-segment nonlinearities. IEEE Trans. Control Syst. Technol. 11(2), 253–265 (2003)

    Article  Google Scholar 

  34. J. Vörös, Modeling and parameter identification of systems with multi-segment piecewise-linear characteristics. IEEE Trans. Autom. Control 47(1), 184–188 (2002)

    Article  Google Scholar 

  35. D.Q. Wang, Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl. 5(14), 1648–1657 (2011)

    Article  MathSciNet  Google Scholar 

  36. D.Q. Wang, F. Ding, Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process. 91(5), 1182–1189 (2011)

    Article  MATH  Google Scholar 

  37. X.H. Wang, F. Ding, Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems. Int. J. Adapt. Control Signal Process. 30 (2016). doi:10.1002/acs.2642

  38. X.H. Wang, F. Ding, Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle. Signal Process. 117, 208–218 (2015)

    Article  Google Scholar 

  39. D.Q. Wang, Y.P. Gao, Recursive maximum likelihood identification method for a multivariable controlled autoregressive moving average system. IMA J. Math. Control Inf. (2015). doi:10.1093/imamci/dnv021

  40. D.Q. Wang, H.B. Liu, F. Ding, Highly efficient identification methods for dual-rate Hammerstein systems. IEEE Trans. Control Syst. Technol. 23(5), 1952–1960 (2015)

    Article  Google Scholar 

  41. C. Wang, T. Tang, Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems. Appl. Math. Lett. 29, 36–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. C. Wang, T. Tang, Several gradient-based iterative estimation algorithms for a class of nonlinear systems using the filtering technique. Nonlinear Dyn. 77(3), 769–780 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. D.Q. Wang, W. Zhang, Improved least squares identification algorithm for multivariable Hammerstein systems. J. Frankl. Inst. Eng. Appl. Math. 352(11), 5292–5370 (2015)

  44. A. Wills, T.B. Schön, L. Ljung, B. Ninness, Identification of Hammerstein–Wiener models. Automatica 49(1), 70–81 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. D.Q. Zhu, X. Hua, B. Sun, A neurodynamics control strategy for real-time tracking control of autonomous underwater vehicles. J. Navig. 67(1), 113–127 (2014)

    Article  Google Scholar 

  46. D.Q. Zhu, H. Huang, S.X. Yang, Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in 3D underwater workspace. IEEE Trans. Cybern. 43(2), 504–514 (2013)

    Article  Google Scholar 

  47. D.Q. Zhu, Q. Liu, Z. Hu, Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum behaved particle swarm optimization. Int. J. Control 84(11), 1817–1829 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61203111) and the PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, F., Wang, X., Chen, Q. et al. Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition. Circuits Syst Signal Process 35, 3323–3338 (2016). https://doi.org/10.1007/s00034-015-0190-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0190-6

Keywords

Navigation