Skip to main content
Log in

Non-fragile Observer-Based \({\mathcal {H}}_{\infty }\) Control for Discrete-Time Systems Using Passivity Theory

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, non-fragile observer-based \({\mathcal {H}}_{\infty }\) controller design is investigated for a class of discrete-time systems. The system under consideration is assumed to have random fluctuations in both the state feedback controller gain and observer gain matrices. The random fluctuations are defined using Bernoulli-distributed white sequences with time-varying probability measures. The probability-dependent controller gains are designed to guarantee the stochastic stability of the system with a prescribed mixed \({\mathcal {H}}_{\infty }\) and passivity performance. Lyapunov stability theory, passivity theory and a linear matrix inequality (LMI) approach are used to derive sufficient conditions for the existence of the state feedback controller and observer gains. The probability-dependent gain-scheduled controllers are designed based on a convex optimization problem using a set of LMIs, which can be easily solved with standard numerical packages. Finally, a practical application is presented as an example to illustrate the effectiveness and potential of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Boyd, L. EL Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Studies in Applied Mathematics, Wiley-Blackwell, USA, 1994)

    Book  Google Scholar 

  2. N. Dadkhah, L. Rodrigues, Non-fragile state-feedback control of uncertain piecewise-affine slab systems with input constraints: a convex optimisation approach. IET Control Theory Appl. 8(8), 626–632 (2014)

    Article  MathSciNet  Google Scholar 

  3. Z. Feng, J. Lam, H. Gao, \(\alpha \)-Dissipativity analysis of singular time-delay systems. Automatica 47(11), 2548–2552 (2011)

    Article  MathSciNet  Google Scholar 

  4. L. Hou, G. Zong, W. Zheng, Y. Wu, Exponential \(l_2-l_{\infty }\) control for discrete-time switching Markov jump linear systems. Circ. Syst. Signal Process. 32(6), 2745–2759 (2013)

    Article  MathSciNet  Google Scholar 

  5. B. Jiang, P. Shi, Z. Mao, Sliding mode observer-based fault estimation for nonlinear networked control systems. Circ. Syst. Signal Process. 30(1), 1–16 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. D.W. Kim, H.J. Lee, Sampled-data observer-based output-feedback fuzzy stabilization of nonlinear systems: Exact discrete-time design approach. Fuzzy Sets Syst. 201, 20–39 (2012)

    Article  MATH  Google Scholar 

  7. N. Kottenstette, J.F. Hall III, X. Koutsoukos, J. Sztipanovits, P. Antsaklis, Design of networked control systems using passivity. IEEE Trans. Control Syst. Technol. 21(3), 649–665 (2013)

    Article  Google Scholar 

  8. Y.H. Lan, H.X. Huang, Y. Zhou, Observer-based robust control of a \((1\le \alpha < 2)\) fractional-order uncertain systems: a linear matrix inequality approach. IET Control Theory Appl. 6(2), 229–234 (2012)

    Article  MathSciNet  Google Scholar 

  9. H. Li, X. Jing, H.R. Karimi, Output-feedback-based \({\cal H}_{\infty }\) control for vehicle suspension systems with control delay. IEEE Trans. Ind. Electron. 61(1), 436–446 (2014)

    Article  Google Scholar 

  10. Y. Ma, N. Gu, Q. Zhang, Non-fragile robust \({\cal H}_{\infty }\) control for uncertain discrete-time singular systems with time-varying delays. J. Franklin Inst. 351(6), 3163–3181 (2014)

    Article  MathSciNet  Google Scholar 

  11. S. Muhammad, A.D. Cerezo, Passivity-based control applied to the dynamic positioning of ships. IET Control Theory Appl. 6(5), 680–688 (2012)

    Article  MathSciNet  Google Scholar 

  12. J.H. Park, Robust non-fragile decentralized controller design for uncertain large-scale interconnected systems with time-delays. J. Dyn. Syst. Meas. Control 124(2), 332–336 (2002)

    Article  Google Scholar 

  13. J.H. Park, Robust non-fragile guaranteed cost control of uncertain large-scale systems with time-delays in subsystem interconnections. Int. J. Syst. Sci. 35(4), 233–241 (2004)

    Article  MATH  Google Scholar 

  14. P. Seiler, R. Sengupta, An \({\cal H}_{\infty }\) approach to networked control. IEEE Trans. Autom. Control 50(3), 356–364 (2005)

    Article  MathSciNet  Google Scholar 

  15. Y. Shao, X. Liu, X. Sun, Q. Zhang, A delay decomposition approach to \({\cal H}_{\infty }\) admissibility for discrete-time singular delay systems. Inf. Sci. 279, 893–905 (2014)

    Article  MathSciNet  Google Scholar 

  16. H. Shen, S. Xu, X. Song, G. Shi, Passivity-based control for Markovian jump systems via retarded output feedback. Circ. Syst. Signal Process. 31(1), 189–202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. X. Su, L. Wu, P. Shi, Y.D. Song, A novel approach to output feedback control of fuzzy stochastic systems. Automatica 50(12), 3269–3275 (2014)

    Article  MathSciNet  Google Scholar 

  18. X. Su, P. Shi, L. Wu, Y.D. Song, A novel control design on discrete-time Takagi–Sugeno fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. 21(4), 655–671 (2013)

    Article  Google Scholar 

  19. X. Su, P. Shi, L. Wu, M.V. Basin, Reliable filtering with strict dissipativity for TS fuzzy time-delay systems. IEEE Trans. Cybern. 44(12), 2470–2483 (2014)

    Article  Google Scholar 

  20. J. Wang, H. Shen, Passivity-based fault-tolerant synchronization control of chaotic neural networks against actuator faults using the semi-Markov jump model approach. Neurocomputing 143, 51–56 (2014)

    Article  Google Scholar 

  21. Z. Wang, F. Yang, D.W.C. Ho, X. Liu, Robust \({\cal H}_{\infty }\) control for networked systems with random packet losses. IEEE Trans. Syst. Man Cybern. B 37(4), 916–924 (2007)

    Article  Google Scholar 

  22. G. Wei, Z. Wang, B. Shen, Probability-dependent gain-scheduled control for discrete stochastic delayed systems with randomly occurring nonlinearities. Int. J. Robust Nonlinear Control 23(7), 815–826 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Wen, Z. Zeng, T. Huang, Observer-based \({\cal H}_{\infty }\) control of discrete time-delay systems with random communication packet losses and multiplicative noises. Appl. Math. Comput. 219(12), 6484–6493 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Wen, Z. Zeng, T. Huang, G. Bao, Observer-based \({\cal H}_{\infty }\) control of a class of mixed delay systems with random data losses and stochastic nonlinearities. ISA Trans. 52(2), 207–214 (2013)

    Article  Google Scholar 

  25. L. Wu, X. Yang, H.K. Lam, Dissipativity analysis and synthesis for discrete-time TS fuzzy stochastic systems with time-varying delay. IEEE Trans. Fuzzy Syst. 22(2), 380–394 (2014)

    Article  Google Scholar 

  26. L. Wu, W. Zheng, H. Gao, Dissipativity-based sliding mode control of switched stochastic systems. IEEE Trans. Autom. Control 58(3), 785–791 (2013)

    Article  MATH  Google Scholar 

  27. L. Wu, W. Zheng, Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45(9), 2120–2127 (2009)

    Article  MathSciNet  Google Scholar 

  28. J. Xiao, W. Xiang, New results on asynchronous \({\cal H}_{\infty }\) control for switched discrete-time linear systems under dwell time constraint. Appl. Math. Comput. 242, 601–611 (2014)

    Article  MathSciNet  Google Scholar 

  29. L. Xie, Output feedback \({\cal H}_{\infty }\) control of systems with parameter uncertainty. Int. J. Control 63(4), 741–750 (1996)

    Article  MATH  Google Scholar 

  30. R. Yang, G.P. Liu, P. Shi, C. Thomas, M.V. Basin, Predictive output feedback control for networked control systems. IEEE Trans. Ind. Electron. 61(1), 512–520 (2014)

    Article  Google Scholar 

  31. R. Yang, P. Shi, G.P. Liu, Filtering for discrete-time networked nonlinear systems with mixed random delays and packet dropouts. IEEE Trans. Autom. Control 56(11), 2655–2660 (2011)

    Article  MathSciNet  Google Scholar 

  32. J. You, H. Gao, M.V. Basin, Further improved results on \({\cal H}_{\infty }\) filtering for discrete time-delay systems. Signal Process. 93(7), 1845–1852 (2013)

    Article  MATH  Google Scholar 

  33. W.A. Zhang, L. Yu, H. Song, \({\cal H}_{\infty }\) filtering of networked discrete-time systems with random packet losses. Inf. Sci. 179(22), 3944–3955 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Y. Zhang, C. Liu, Observer-based finite-time \({\cal H}_{\infty }\) control of discrete-time Markovian jump systems. Appl. Math. Model. 37(6), 3748–3760 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Zhang, P. Shi, S.K. Nguang, H.R. Karimi, Observer-based finite-time fuzzy \({\cal H}_{\infty }\) control for discrete-time systems with stochastic jumps and time-delays. Signal Process. 97, 252–261 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Editor-In-Chief, Prof. M. N. S. Swamy, the Associate Editor, and the Reviewers for the comments that helped to improve the quality of the paper. The work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2013R1A1A2A10005201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju H. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathiyalagan, K., Park, J.H., Jung, H.Y. et al. Non-fragile Observer-Based \({\mathcal {H}}_{\infty }\) Control for Discrete-Time Systems Using Passivity Theory. Circuits Syst Signal Process 34, 2499–2516 (2015). https://doi.org/10.1007/s00034-015-9984-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-9984-9

Keywords

Navigation