
ar
X

iv
:1

50
9.

02
62

8v
1 

 [
cs

.I
T

] 
 9

 S
ep

 2
01

5

Circuits Syst Signal Process manuscript No.
(will be inserted by the editor)

A Class of Deterministic Sensing Matrices and Their

Application in Harmonic Detection

Shan Huang · Hong Sun · Lei Yu ·

Haijian Zhang

Received: date / Accepted: date

Abstract In this paper, a class of deterministic sensing matrices are con-
structed by selecting rows from Fourier matrices. These matrices have better
performance in sparse recovery than random partial Fourier matrices. The
coherence and restricted isometry property of these matrices are given to eval-
uate their capacity as compressive sensing matrices. In general, compressed
sensing requires random sampling in data acquisition, which is difficult to im-
plement in hardware. By using these sensing matrices in harmonic detection, a
deterministic sampling method is provided. The frequencies and amplitudes of
the harmonic components are estimated from under-sampled data. The sim-
ulations show that this under-sampled method is feasible and valid in noisy
environments.

Keywords Compressed sensing · Deterministic sensing matrices · Under-
sampling · Harmonic detection

1 Introduction

Compressed sensing (CS) theory asserts that one can recover sparse signals
from far fewer samples or measurements than traditional methods [5]. The
concept of CS is to recover high dimension sparse signals through low dimen-
sion measurements. The two fundamental questions in compressed sensing are
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how to construct suitable sensing matrices and how to recover sparse signals
from under-sampled data efficiently. To find the sparsest solution, one would
solve the problem

argmin‖x‖
0

s.t. Φx = y, (1)

where x ∈ CN is a sparse vector, ℓ0 norm denotes its number of nonzero
elements, Φ ∈ CM×N is called a (compressed) sensing matrix and y ∈ CM

is the measurement. However, this is a hard combinatorial problem. In order
to make problem (1) solvable, the sensing matrix Φ must obey a uniform
uncertainty principle.

The sensing matrix Φ has the (k, δ)-restricted isometry property (RIP) if

(1− δ) ‖x‖2
2
≤ ‖Φx‖2

2
≤ (1 + δ) ‖x‖2

2
(2)

holds for all k -sparse vectors x, ‖x‖2 denotes ℓ2-norm of x [5]. The smallest
δ for (k, δ)-RIP is the restricted isometry constant (RIC) δk. If a complex
matrix Φ satisfies (k, δ)-RIP, then the 2M × 2N real matrix Φ′, formed by

replacing each element a +
√
−1b by matrix

(

a −b

b a

)

also satisfies the same

(k, δ)-RIP in real number domain [3]. Let Φ be a matrix with ℓ2-normalized
columns ϕ1, ϕ2, · · · , ϕN , i.e. ‖ϕn‖2 = 1 for n = 1, 2, · · · , N , the condition
(2) is equivalent to that the Gram matrix ΦH

KΦK of every column submatrix
ΦK(K ⊂ {1, 2, · · · , N}, |K| ≤ k) has all its eigenvalues in the interval [1 −
δk, 1 + δk]. If δ2k < 1, the problem (1) has an unique k-sparse solution. It has
been proven that when δ2k <

√
2− 1 the problem (1) can be approximated by

a relaxed ℓ1 norm convex optimization [4], that is

argmin‖x‖
1

s.t. Φx = y. (3)

Another criterion often used to evaluate the property of a CS matrix is
coherence. For the matrix Φ with ℓ2-normalized columns, the coherence of Φ
is defined as

µ (Φ) = max
1≤n6=n′≤N

|〈ϕn, ϕn′〉| . (4)

Although the computation of coherence which only involves two columns each
time is much more feasible, it considers the worst case and often leads to
results somewhat pessimistic.

By the concentration inequalities, some random matrices are proven to
satisfy RIP with high probability, such as matrices with independent Gaussian
or Bernoulli elements [1], or matrices whose rows are randomly selected from
the discrete Fourier transform matrices [12]. In practical application, random
sensing matrices usually imply random sampling in data acquisition, which
is difficult to implement in hardware. Many scholars have become interested
in finding deterministic RIP matrix constructions [13][17]. A deterministic
construction of sensing matrices was given by polynomials over finite fields
and the RIP weaker than random matrices was proven [7]. The class of partial
Fourier matrices is of special importance in CS. Some deterministic sensing
matrices of partial Fourier were constructed in [9] and [15]. Sensing matrices
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similar to partial Fourier matrices were also constructed explicitly [16], even
some matrices break the k2 barrier related to RIP [3].

In this paper, we shall verify that a class of deterministic partial Fourier
matrices can be used as sensing matrices and utilize these matrices to design a
deterministic sampling method for harmonic detection. It will be demonstrated
that the frequencies and amplitudes of harmonic components can be estimated
from deterministic sub-Nyquist samples.

2 Deterministic Sensing Matrices

In this section, we give the sensing matrices directly and analyze their property
as sensing matrices. Let FN be the N × N Fourier matrix whose element in
m-th row and n-th column is given by

FN [m,n] = exp

(

j2πmn

N

)

, m, n = 1, 2, · · · , N, (5)

where j =
√
−1 is imaginary unit. We restrict N = 4z + 3 (z is a positive

integer) to be a prime number and choose M = 2z+1 = (N − 1)/2 rows from
FN to construct an M × N partial Fourier matrix. The indexes of the rows
are given by

M =
{

m : p ·m2 mod N, m = 1, 2, · · · ,M
}

, (6)

where p is an arbitrary positive integer co-prime to N . The M row indexes
just don’t repeat according to number theory. Because of the periodicity of
trigonometric functions, the elements of generated matrix A can be written
as

A [m,n] = exp

(

j2π · pm2 · n
N

)

, m ∈ M, n = 1, 2, · · · , N. (7)

2.1 The Coherence

Then we check the property of the matrix A. In order to calculate the coher-
ence of A, we introduce the following theorem about quadratic Gauss sum:

Theorem 1 (Theorem 1.5.2 in [2]) Let k and N be coprime integers with
N > 0 and N ≡ 3(mod4).Then

g (k;N) ,

N−1
∑

m=0

exp

(

j2πkm2

N

)

=

(

k

N

)

j
√
N,

where
(

k
N

)

denotes the Jacobi symbol.



4 Shan Huang et al.

The coherence of A can be expressed as

µ (A) = max
d∈{1,2··· ,N−1}

1

M

∣

∣

∣

∣

∣

M
∑

m=1

exp

(

j2πdpm2

N

)

∣

∣

∣

∣

∣

. (8)

Taking note that the values of (dpm2 mod N) distribute symmetrically when
m = 1, 2, · · · , N − 1, so we obtain

µ (A) =

∣

∣

∣

∣

∣

±j
√
N − 1

2M

∣

∣

∣

∣

∣

=

√
M + 1√
2M

. (9)

It has been proven that orthogonal matching pursuit (OMP) and ba-
sis pursuit (BP) both can recover the k-sparse solution of (1) when k <
1

2

(

µ−1 + 1
)

[14]. So A can guarantee the recovery of sparse signals below the

sparse level of 1

2

( √
2M√
M+1

+ 1
)

≈
√

M
2
. As what metioned in Sect. 1, the result

is somewhat pessimistic compared with numerical experiments.

2.2 The RIP

We give the RIP of A according to the following result:

Theorem 2 (Theorem 14.1 in [8]) Suppose x is a k-sparse vector which is
uniformly distributed among all k-sparse vectors. If for δ, ε ∈ (0, 1), there
exists a constant c > 0 such that

µ (Φ) ≤ cδ

ln (N/ε)
,
k

N
‖Φ‖2

2
≤ cδ2

ln (N/ε)
. (10)

Then Φ with ℓ2-normalized columns satisfies (k, δ)-RIP with probability at least
1− ε.

To present the statistical RIP of A intuitively, we plot the maximum and
minimum eigenvalues of Gram matrices ΦH

KΦK, where ΦK are randomly se-
lected column submatrices. We set M = 11 and N = 23. The Maximum and
minimum eigenvalues of sub-Gram matrices ΦH

KΦK are equivalent to 1+δ and
1 − δ. These eigenvalues of a random partial Fourier matrix are also plotted
for comparison. The data are obtained from 2000 sub-Gram matrices for each
k. The solid lines sketch the average values of maximum and minimum eigen-
values of all sub-Gram matrices and dashed lines sketch the limiting values.
Fig. 1 shows that the eigenvalues of A’s sub-Gram matrices distribute more
intensively than the random partial Fourier matrix. In fact, the correlation of
any two columns of A is either (j

√
N − 1)/2 or (−j

√
N − 1)/2 with equal

probability, which makes the variants of sub-Gram matrices far fewer.
Then we plot the success probabilities of recovering k-sparse vectors x via

A and random partial Fourier matrices when M = 51 and N = 103. For
convenience we use OMP algorithm. At every time, the locations of nonzero
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(b)

Fig. 1 Maximum and minimum eigenvalues of sub-Gram matrices for k. (a) A; (b) The
random partial Fourier matrix.

elements in vector x distribute uniformly among all k-sparse vectors and the
values of nonzero elements follow standard normal distribution. If the locations
of nonzero elements in x can be found by OMP, we say that this trial succeeds.
There are 10000 trials for every k. Fig. 2 shows that A has better performance
than random partial Fourier matrices.

3 The Application in Harmonic Detection

Harmonic detection is widely used in electrical power systems [6][11][18]. In
[10], a staggered under-sampling algorithm is proposed to detect the harmonic.
The algorithm reorders sub-Nyquist samples before applying the fast Fourier
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Fig. 2 Comparison of recovery performance between A and random partial Fourier ma-
trices.

transform (FFT). We shall demonstrate that even fewer samples are enough by
using CS. In this section, we analyze the problem and derive our under-sampled
method in complex number domain. Then the practical implementation in
real number domain is given later. The following discussion is in noiseless
situations, but the method is also robust to noise as simulations show.

3.1 Problem Formulation

The signal s(t) contains K harmonic frequency components and we intend to
estimate the frequencies and corresponding amplitudes. The samples can be
expressed as the sums of K complex exponentials, namely

s(t) =

K
∑

k=1

Ck exp (j (2πfk · t+ θk)), (11)

where Ck, fk and θk represent the amplitude, frequency and phase angle of
the k-th harmonic component, respectively. The frequencies are all integer
multiples of some fundamental frequency f0, i.e. fk ∈ {f0, 2f0, · · · , Nf0}.

Suppose we have an analog-digital converter with sampling rate fS = 1/∆t,
arbitrary samples at time points ∆t, 2∆t, · · · , l∆t, · · · can be obtained. In
general, the sampling rate fS must be higher than the Nyquist rate. But
because the harmonic signal is sparse in frequency domain, we can use a specific
low-rate analog-to-digital converter to detect harmonic components.
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3.2 The Method for Under-sampling

Since the harmonic components of the signal are aligned with a discrete fre-
quency grid, the sample s[l] at time point l∆t can be written as

s [l] =

N
∑

n=1

C̃n exp
(

j
(

2πf̃n · l∆t+ θ̃n

))

. (12)

Certainly, without regard to noise, C̃n corresponding to f̃n = nf0 (n =
1, 2, · · · , N) mostly equals zero except the frequency components really con-
tained in s(t).

We give the constraint conditions which should be satisfied and the data
we need directly. Denoting p = f̃N/fS and M = (N − 1)/2, we only need to
sample at rate fS = 1/∆t to obtain M samples s1, s2, · · · , sM at time points
L, provided that the parameters satisfy

– N is a prime number and N = 4z + 3(z ∈ Z
+);

– p is an arbitrary positive integer coprime to N ;
– L = {l ·∆t : l = m2 mod N,m = 1, 2, · · · ,M}.

For instance, if N = 11,M = 5, we start to sample at the time t = 0, then we
should get the samples at the time points 1∆t, 3∆t, 4∆t, 5∆t, 9∆t. Noticing
that p = f̃N/fS is simply required to be coprime to N , the sampling rate fS
may be much lower than the Nyquist rate. Generally speaking, N does not
always meet the first condition, we can select another satisfactory N ′ ≥ N
and a proper sampling rate.

Then the detection method is explained as follows. Because

exp
(

j2πf̃nl∆t
)

= exp

(

j2π
f̃n · l · p

f̃N

)

= exp

(

j2π · pl · n
N

)

, (13)

applying the third condition above, we have

sm =

N
∑

n=1

C̃n exp

(

j

(

2π · pm2 · n
N

+ θ̃n

))

, (14)

where m = 1, 2, · · · ,M . We let

y =











s1
s2
...

sM











,x =













C̃1e
jθ̃1

C̃2e
jθ̃2

...

C̃Nejθ̃N













. (15)

Then

y = Ax, (16)
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where

A =













exp( j2π·p1
2·1

N
) exp( j2π·p1

2·2
N

) · · · exp( j2π·p1
2·N

N
)

exp( j2π·p2
2·1

N
) exp( j2π·p2

2·2
N

) · · · exp( j2π·p2
2·N

N
)

...
...

. . .
...

exp( j2π·pM
2·1

N
) exp( j2π·pM

2·2
N

) · · · exp( j2π·pM2·N
N

)













. (17)

In (16), y and A are known. If x can be solved from (16), C̃n and θ̃n cor-
responding to f̃n will be known. Obviously, x is a K-sparse vector. This is
the same type of problem with (1). The coherence and RIP of A have been
verified in Sect. 2, so the problem (16) can be solved by common sparse re-
covery algorithms. That is to say, after sampling in accordance with the above
requirements, the frequencies and amplitudes of the harmonic components can
be calculated.

3.3 Practical Implementation

In practical applications, real numbers are handled instead of complex num-
bers. We give the implementation of our method in real number domain. For
the convenience of the following discussion, we assume that the last element
of x is 0, so the last column of A can be abandoned. Then (13) changes into

y =
(

B B∗ )
(

x1

x̄2

)

, (18)

where B consists of the first M columns of A and B∗ is its conjugate, x1

consists of the first M elements of x and x̄2 consists of the second M elements
of x adversely. By separating the real part and imaginary part, (18) turns into

yr + jyi = Brx1r −Bix1i +Brx̄2r +Bix̄2i

+ j (Bix1r +Brx1i −Bix̄2r +Brx̄2i) ,
(19)

that is,
y′ = B′x′, (20)

where

y′ =

(

yr

yi

)

,x′ =









x1r

x1i

x̄2r

x̄2i









,B′ =

(

Br −Bi Br Bi

Bi Br −Bi Br

)

. (21)

The subscripts r and i denote the real part and imaginary part of a matrix
respectively. The compound matrix B′ in (20) satisfies the same (k, δ)-RIP
with A in real number domain. However, in practical measurement, such as in
power systems, we couldn’t get the imaginary part yi. We solve this problem
by assuming that x̄2 of the actual signal is 0. That is to say, the highest
harmonic frequency which can be detected is reduced by half. Comparing with
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the theoretical analysis in complex number domain, we should choose twice
the highest frequency as upper limit in practice.

In the process of recovering x′, we set x̄2r = x1r and x̄2i = −x1i, namely

y′ =

(

2yr

0

)

,x′ =









x1r

x1i

x1r

−x1i









. (22)

By using CS recovery algorithms, we obtain x1r and x1i. Then the ampli-
tude C̃n and phase angle θ̃n with respect to the discrete frequency f̃n(n =
1, 2, · · · ,M) can be determined.

4 Simulation Results

In this section, we shall create satisfactory signals and estimate their spec-
trums by the proposed method. The signals are composed of several cosine
waves. The frequency components are assumed to distribute randomly in
{1Hz, 2Hz, · · · , 50Hz}. The amplitudes and phase angles of the frequency
components are set to be uniformly distributed in [0.1, 1] and [0, 2π). Accord-
ing to our method, we set N = 103 and M = 51. The sampling frequency fS
is set to be f̃N/100 = 1.03Hz. The number of nonzero frequency components
is known as the sparsity k.

Firstly the situation without noise is considered. We use OMP as before
to recover the signals and count the probability of success for varying k. The
probability of success for every k is the result of 10000 trials. In Fig. 3, we
can see the success probability is 1 when k ≤ 10, which is much smaller than
the critical value shown in Fig. 2. This is because the actual sparsity of x′ in
solving process is no longer k. In fact, the locations of nonzero elements of x′

have strong correlation because x′ consists of a complex vector’s real part and
imaginary part. If the recovery algorithm is modified to take advantage of this
structural sparsity, better performance will be achieved.

Then we estimate the spectrum of a frequency-sparse signal in white Gaus-
sian noise with SNR=30dB. The signal has 10 frequency components and the
corresponding amplitudes are 0.1, 0.2, · · · , 0.9, 1 respectively. The estimated
spectrum is compared with original signal as shown in Fig. 4. The frequency
components are all found with little error.

At last we reconstruct the signal according to the amplitudes and phase
angles we solve, even though it is not our aim. The reconstructed signal is
plotted to compare with the original signal in Fig. 5. The reconstructed signal
and the original signal are both sampled at 100Hz in time domain. The relative
accumulated error of 50 points is about 3.85%. This indicates that the samples
at the Nyquist rate can be obtained approximatively from under-sampled data.

In above simulations, the sampling frequency has no influence on the re-
sults, provided that p = f̃N/fS is coprime to N . The errors decrease as the
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Fig. 3 Success probability of estimation depending on sparsity in noiseless condition.
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Fig. 4 Comparison between original signal spectrum and estimated spectrum.

sparsity k decreases and the SNR increases, which is the same as standard CS
model.

5 Conclusion

In this paper, we construct a class of deterministic sensing matrices and verify
their property as sensing matrices. Based on the special structure of the matri-
ces, a deterministic under-sampled method of harmonic detection is proposed.
Very few samples are required to estimate the frequencies and amplitudes of
the harmonic components. Through theoretical analysis and numerical exper-
iments, the feasibility and robustness of the method have been verified.
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Fig. 5 Comparison between original signal and restoring signal in time domain.
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