Skip to main content
Log in

A Hybrid Optimization-Based Approach for Parameter Estimation and Investigation of Fractional Dynamics in Ultracapacitors

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The increasing demand of electrical energy storage has motivated the wide usage of ultracapacitors. Ultracapacitors are capable of storing and delivering energy at a rate much higher than conventional rechargeable batteries. The dynamics characteristics of ultracapacitors are better exhibited by fractional calculus as compared to the conventional calculus. The present work aims at estimating the fractional model parameters of an ultracapacitor using experimental data and further investigating the dependency of fractional parameters on the operating conditions. The parameter estimation task has been formulated as an optimization problem which aims at minimizing the deviation between the model and experimental output using a hybrid optimization technique. The hybrid algorithm combines an improved version of seeker optimization algorithm for global exploration with a local search technique, i.e., Nelder–Mead simplex search. The results show that the hybrid algorithm is capable of identifying the model parameters efficiently in both time and frequency domain. The fractional behavior has been found to be dependent on the initial condition, magnitude and offset of the applied voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000)

    Article  Google Scholar 

  2. R. Caponetto, G. Dongola, L. Fotuna, I. Petras, Fractional Order Systems: Modeling and Control Applications (World Scientific Publishing Co. Pt. Ltd, Singapore, 2010)

    Google Scholar 

  3. R. Chelouah, P. Siarry, Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions. Eur. J. Oper. Res. 148(2), 335–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Dai, W. Chen, Y. Zhu, Seeker optimization algorithm. in International Conference on Computational Intelligence and Security (ICCIS-2006, Guangzhou), pp. 225-229 (2006)

  5. C. Dai, W. Chen, Y. Zhu, Seeker optimization algorithm for digital IIR filter design. IEEE Trans. Ind. Electron. 57(5), 1710–1718 (2010)

    Article  Google Scholar 

  6. C. Dai, W. Chen, Y. Zhu, X. Zhang, Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 24(3), 1218–1231 (2009)

    Google Scholar 

  7. S. Das, Functional Fractional Calculus (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  8. A. Dzieliński, G. Sarwas, D. Sierociuk, Time domain validation of ultracapacitor fractional order model. in 49th IEEE Conference on Decision and Control (CDC-2010, Atlanta), pp. 3730-3735 (2010)

  9. A. Dzieliński, G. Sarwas, D. Sierociuk, Comparison and validation of integer and fractional order ultracapacitor models. Adv. Differ. Equ. 2011(1), 1–15 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Dzieliński, D. Sierociuk, Ultracapacitor modelling and control using discrete fractional order state-space models and fractional kalman filters. in Proceedings of the European Control Conference (ECC-2007, Kos, Greece), pp. 2916-2922 (2007)

  11. A. Dzieliński, D. Sierociuk, G. Sarwas, Ultracapacitor parameters identification based on fractional order model. in IEEE European Control Conference (ECC-2009, Budapest), pp. 196-200 (2009)

  12. A.S. Elwakil, Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010)

    Article  Google Scholar 

  13. T.J. Freeborn, B.M. Maundy, A.S. Elwakil, Least squares estimation technique of Cole-Cole parameters from step response. Electron. Lett. 48(13), 752–754 (2012)

    Article  Google Scholar 

  14. T.J. Freeborn, B.M. Maundy, A.S. Elwakil, Accurate time domain extraction of supercapacitor fractional-order model parameters. in IEEE International Symposium on Circuits and Systems (ISCAS-2013, Beijing), pp. 2259-2262 (2013)

  15. T.J. Freeborn, B.M. Maundy, A.S. Elwakil, Measurement of supercapacitor fractional-order model parameters from voltage-excited step response. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 367–376 (2013)

    Article  Google Scholar 

  16. T.J. Freeborn, B.M. Maundy, A.S. Elwakil, Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Mater. Renew. Sustain. Energy 4(3), 1–7 (2015)

    Article  Google Scholar 

  17. M.E. Fouda, A.G. Radwan, Fractional-order memristor response under dc and periodic signals. Circuits Syst. Signal Process. 34(3), 961–970 (2014)

    Article  MathSciNet  Google Scholar 

  18. I.S. Ike, An overview of mathematical modeling of electrochemical supercapacitors/ultracapacitors. J. Power Sources 273, 264–277 (2015)

    Article  Google Scholar 

  19. V. Kelner, F. Capitanescu, O. Léonard, L. Wehenkel, A hybrid optimization technique coupling an evolutionary and a local search algorithm. J. Comput. Appl. Math. 215(2), 448–456 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15), 2483–2498 (2000)

    Article  Google Scholar 

  21. M.S. Krishna, S. Das, K. Biswas, B. Goswami, Fabrication of a fractional order capacitor with desired specifications: a study on process identification and characterization. IEEE Trans. Electron Devices 58(11), 4067–4073 (2011)

    Article  Google Scholar 

  22. M.R. Kumar, S. Ghosh, S. Das, Identification of fractional order circuits from frequency response data using seeker optimization algorithm. in IEEE International Conference on Industrial Instrumentation and Control (ICIC-2015, Pune), pp. 197-202 (2015)

  23. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Lajnef, J.M. Vinassa, O. Briat, C. Zardini, Study of ultracapacitors dynamic behavior using impedance frequency analysis on a specific test bench. in IEEE International Symposium on Industrial Electronics, pp. 839-844 (2004)

  25. H. Lilian, X. Zhou, Identification of fractional-order system based on modified differential evolution. 25th IEEE Chinese Control and Decision Conference (CCDC-2013, Guiyang), pp. 2916-2922 (2013)

  26. A. Liu, M.T. Yang, A new hybrid Nelder–Mead particle swarm optimization for coordination optimization of directional overcurrent relays. Math. Probl. Eng. 2012, 1–18 (2012). doi:10.1155/2012/456047

    MathSciNet  MATH  Google Scholar 

  27. Q. Long, C. Wu, A hybrid method combining genetic algorithm and Hooke–Jeeves method for constrained global optimization. J. Ind. Manag. Optim. 10(4), 1279–1296 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.T. Machado, A.M. Galhano, J.J. Trujillo, On development of fractional calculus during the last fifty years. Scientometrics 98(1), 577–582 (2014)

    Article  Google Scholar 

  29. D. Maiti, M. Chakraborty, A. Konar, A novel approach for complete identification of dynamic fractional order systems using stochastic optimization algorithms and fractional calculus. in IEEE International Conference on Electrical and Computer Engineering (ICECE, Dhaka), pp. 867-872 (2008)

  30. R. Martin, J. Quintana, A. Ramos, I. de la Nuez, Modeling electrochemical double layer capacitor, from classical to fractional impedance. in The 14th IEEE Mediterranean Electrotechnical Conference (MELECON 2008, Ajaccio), pp. 61-66 (2008)

  31. V. Martynyuk, M. Ortigueira, Fractional model of an electrochemical capacitor. Signal. Process. 107, 355–360 (2015)

    Article  Google Scholar 

  32. B. Maundy, A.S. Elwakil, S. Gift, On the realization of multiphase oscillators using fractional-order allpass filters. Circuits Syst. Signal Process. 31(1), 3–17 (2012)

    Article  MathSciNet  Google Scholar 

  33. J.M. Miller, Ultracapacitor Applications (The Institution of Engineering and Technology, London, UK, 2011)

    Book  Google Scholar 

  34. C.A. Monje, Y.Q. Chen, B.M. Vinagre, V. Feliu-Batlle, Fractional-Order Systems and Controls: Fundamentals and Applications (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  35. I. Pan, S. Das, Intelligent Fractional Order and Control: An Introduction (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  36. Panasonic Corporation, (2015), http://industrial.panasonic.com/lecs/www-data/pdf/ABC0000/ABC0000CE4.pdf. Accessed 15 Jul 2015

  37. S. Pawel, W. Mitkowski, Fractional-order models of the ultracapacitors. Adv. Theory Appl. Non-integer Order Syst. 257, 281–293 (2013)

    Article  MATH  Google Scholar 

  38. I. Petras, D. Sierociuk, I. Podlubny, Identification of parameters of a half-order system. IEEE Trans. Signal Process. 60(10), 5561–5566 (2012)

    Article  MathSciNet  Google Scholar 

  39. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic press, Cambridge, 1998)

    MATH  Google Scholar 

  40. P. Puri, S. Ghosh, A hybrid optimization approach for PI controller tuning based on gain and phase margin specifications. Swarm Evolut. Comput. 8, 69–78 (2013)

    Article  Google Scholar 

  41. J.J. Quintana, A. Ramos, I. Nuez, Identification of the fractional impedance of ultracapacitors. in 2nd IFAC Workshop on Fractional Differentiation and its Applications, Portugal (2006)

  42. J.J. Quintana, A. Ramos, I. Nuez, Modeling of an EDLC with fractional transfer functions using Mittag–Leffler equations. Math. Probl. Eng. 2013, 1–7 (2013)

    Article  Google Scholar 

  43. A.G. Radwan, M.E. Fouda, Optimization of fractional-order RLC filters. Circuits Syst. Signal Process. 32(5), 2097–2118 (2013)

    Article  MathSciNet  Google Scholar 

  44. D. Riu, N. Retiere, D. Linzen, Half-order modelling of supercapacitors. in IAS Annual Meeting, pp. 2550–2554 (2004)

  45. S. Saha, R. Kar, D. Mandal, S.P. Ghoshal, Seeker optimisation algorithm: application to the design of linear phase finite impulse response filter. IET Signal Proc. 6(8), 763–771 (2012)

    Article  MathSciNet  Google Scholar 

  46. H. Sheng, Y.Q. Chen, T.S. Quin, Fractional Processes and Fractional Order Signal Processing: Techniques and Applications (Springer, Berlin, 2012)

    Book  Google Scholar 

  47. Z. Shengxi, J. Cao, Y.Q. Chen, Genetic algorithm-based identification of fractional-order systems. Entropy 15(5), 1624–1642 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. L. Shi, M.L. Crow, Comparison of ultracapacitor electric circuit models. in IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–6 (2008)

  49. Y. Tang, X. Jhang, C. Hua, L. Li, Y. Yang, Parameter identification of commensurate fractional-order chaotic system via differential evolution. Phys. Lett. A 376(4), 457–464 (2012)

    Article  MATH  Google Scholar 

  50. Y. Wang, T.T. Hartley, C.F. Lorenzo, J.L. Adams, J.E. Carletta, R.J. Veillette, Modeling ultracapacitors as fractional order systems. in New Trends in Nanotechnology and Fractional Calculus Applications (Springer), pp. 257–262 (2010)

  51. S. Westerlund, E. Lars, Capacitor theory. IEEE Trans. Dielectr. Electr. Inst. 1(5), 826–839 (1994)

    Article  Google Scholar 

  52. E. Zahara, Y.T. Kao, Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Syst. Appl. 36(2), 3880–3886 (2009)

    Article  Google Scholar 

  53. L. Zubieta, R. Bonert, Characterization of double-layer capacitors for power electronics applications. IEEE Trans. Ind. Appl. 36(1), 199–205 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhojit Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.R., Ghosh, S. & Das, S. A Hybrid Optimization-Based Approach for Parameter Estimation and Investigation of Fractional Dynamics in Ultracapacitors. Circuits Syst Signal Process 35, 1949–1971 (2016). https://doi.org/10.1007/s00034-016-0254-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0254-2

Keywords

Navigation