Skip to main content
Log in

On The Optimization of Fractional Order Low-Pass Filters

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents three different optimization cases for normalized fractional order low-pass filters (LPFs) with numerical, circuit and experimental results. A multi-objective optimization technique is used for controlling some filter specifications, which are the transition bandwidth, the stop band frequency gain and the maximum allowable peak in the filter pass band. The extra degree of freedom provided by the fractional order parameter allows the full manipulation of the filter specifications to obtain the desired response required by any application. The proposed mathematical model is further applied to a case study of a practical second- generation current conveyor (CCII)-based fractional low-pass filter. Circuit simulations are performed for two different fractional order filters, with orders 1.6 and 3.6, with cutoff frequencies 200 and 500 Hz, respectively. Experimental results are also presented for LPF of 4.46 kHz cutoff frequency using a fabricated fractional capacitor of order 0.8, proving the validity of the proposed design approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. K. Biswas, L. Thomas, S. Chowdhury, B. Adhikari, S. Sen, Impedance behaviour of a microporous PMMA-film coated constant phase element’ based chemical sensor. Int. J. Smart Sens. Intell. Syst. 1(4), 922–939 (2008)

    Google Scholar 

  2. A. Bunde, S. Havlin, Fractals in Science (Springer, Amsterdam, 1995)

    MATH  Google Scholar 

  3. D. Cafagna, Past and present-fractional calculus: a mathematical tool from the past for present engineers. IEEE Ind. Electron. Mag. 1(2), 35–40 (2007)

    Article  MathSciNet  Google Scholar 

  4. H. Chen, Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation. Int. J. Control Autom. Syst. 12(6), 1216–1224 (2014)

    Article  Google Scholar 

  5. T.F. Coleman, Y. Li, An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Dumlu, K. Erenturk, Trajectory tracking control for a 3-DOF parallel manipulator using fractional-order control. IEEE Trans. Ind. Electron. 61(7), 3417–3426 (2014)

    Article  Google Scholar 

  7. T.J. Freeborn, B. Maundy, A.S. Elwakil, Field programmable analogue array implementation of fractional step filters. IET Circ. Device Syst. 4(6), 514–524 (2010)

    Article  Google Scholar 

  8. T.J. Freeborn, B. Maundy, A.S. Elwakil, Approximated fractional-order Chebyshev lowpass filters. Math. Prob. Eng. 2015. doi:10.1155/2015/832468

  9. E.A. Gonzalez, L. Dorcak, C.A. Monje, J. Valsa, F.S. Caluyo, I. Petras, Conceptual design of a selectable fractional-order differentiator for industrial applications. Fract. Calc. Appl. Anal. 17(3), 697–716 (2014)

    Article  MATH  Google Scholar 

  10. T.C. Haba, G. Ablart, T. Camps, F. Olivie, Influence of the electrical parameters on the input impedance of a fractal structure realized on silicon. Chaos Soliton Fract. 24(2), 479–490 (2005)

    Article  Google Scholar 

  11. T. Helie, Simulation of fractional-order low-pass filters. IEEE/ACM Trans. Audio Speech Lang. Process. 22(11), 1636–1647 (2014)

    Article  Google Scholar 

  12. R.L. Magin, Fractional Calculus in Bioengineering (Begell House, Connecticut, 2006)

    Google Scholar 

  13. M. Nakagava, K. Sorimachi, Basic characteristics of a fractance device. IEICE Trans. Fundam. E75-A(12), 1814–1818 (1992)

  14. K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Dover Books on Mathematics, New York, 2006)

    MATH  Google Scholar 

  15. I. Podlubny, I. Petras, B. Vinagre, P. O’leary, L. Dorcak, Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29, 281–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. A.G. Radwan, A.M. Soliman, A.S. Elwakil, Design equations for fractional-order sinusoidal oscillators: four practical circuits examples. Int. J. Circ. Theor. Appl. 36(4), 473–492 (2008)

    Article  MATH  Google Scholar 

  17. A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: Design procedure and practical examples. IEEE Trans. Circ. Syst. I 55(7), 2051–2063 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. A.G. Radwan, A.M. Soliman, A.S. Elwakil, First-order filters generalized to the fractional domain. J. Circuit Syst. Comput. 17(1), 55–66 (2008)

    Article  Google Scholar 

  19. A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to the fractional-order domain. J. Circuit Syst. Comput. 18(2), 361–386 (2009)

    Article  Google Scholar 

  20. A.G. Radwan, A.M. Soliman, A.S. Elwakil, A. Sedeek, On the stability of linear systems with fractional-order elements. Chaos Soliton Fract. 40(5), 2317–2328 (2009)

    Article  MATH  Google Scholar 

  21. K. Saito, M. Sugi, Simulation of power-law relaxations by analog circuits: fractal distribution of relaxation times and non-integer exponents. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E7–b(2), 1627–1634 (1993)

    Google Scholar 

  22. R. Schaumann, M.E. Van Valkenburg, Design of Analog Filters (Oxford University Press, Oxford, 2001)

    Google Scholar 

  23. A. Shamim, A.G. Radwan, K.N. Salama, Fractional smith chart theory and application. IEEE Microw. Wirel. Compon. Lett. 21(3), 117–119 (2011)

    Article  Google Scholar 

  24. A.M. Soliman, Ford-Girling equivalent circuit using CCII. Electron. Lett. 14(22), 721–722 (1978)

    Article  Google Scholar 

  25. A.M. Soliman, Current conveyor filters: classification and review. Microelectron. J. 29, 133–149 (1998)

    Article  Google Scholar 

  26. A. Soltan, A.G. Radwan, A.M. Soliman, Fractional order filter with two fractional elements of dependant orders. Microelectron. J. 43(11), 818–827 (2012)

    Article  Google Scholar 

  27. A. Soltan, A.G. Radwan, A.M. Soliman, CCII based fractional filters of different orders. J. Adv. Res. 5, 157–164 (2014)

    Article  Google Scholar 

  28. A. Soltan, A. G. Radwan, A. M. Soliman, Fractional order butterworth filter:active and passive realizations. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 346–354 (2013)

  29. M. Sugi, Y. Hirano, Y.F. Miura, K. Saito, Simulation of fractal immittance by analog circuits: an approach to the optimized circuits. IEICE Trans. Fundam. Electron. 82(8), 205–209 (1999)

    Google Scholar 

  30. J. Valsa, P. Dvorak, M. Friedl, Network model of the CPE. Radioengineering 20(3), 619–626 (2011)

    Google Scholar 

  31. J. Valsa, J. Vlach, RC models of a constant phase element. Int. J. Circuit Theory Appl. 41(1), 59–67 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed H. Madian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, L.A., Ismail, S.M., Radwan, A.G. et al. On The Optimization of Fractional Order Low-Pass Filters. Circuits Syst Signal Process 35, 2017–2039 (2016). https://doi.org/10.1007/s00034-016-0258-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0258-y

Keywords

Navigation