Skip to main content
Log in

Soft Fault Feature Extraction in Nonlinear Analog Circuit Fault Diagnosis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Aiming at the problem to diagnose soft faults in nonlinear analog circuits, a novel approach to extract fault features is proposed. The approach is based on the Wigner–Ville distribution (WVD) of the subband Volterra model. First, the subband Volterra kernels of the circuit under test are cleared. Then, the subband Volterra kernels are used to obtain the WVD functions. The fault features are extracted from the WVD functions and taken as input data into the hidden Markov model (HMM). Finally, with classification of features using HMMs, the soft fault diagnosis of the nonlinear analog circuit is achieved. The simulations and experiments show that the method proposed in this paper can extract the fault features effectively and improve the fault diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Aminian, M. Aminian, Analog fault diagnosis of actual circuits using neural networks. IEEE Trans. Instrum. Meas. 51(3), 544–550 (2002)

    Article  Google Scholar 

  2. M. Aminian, F. Aminian, Neural-network based on analog-circuit fault diagnosis using wavelet transform as preprocessor. IEEE Trans. Circuits Syst. II Analog Digit. Process. 47(2), 151–156 (2000)

    Article  Google Scholar 

  3. Y. Ao, Y. Shi, W. Zhang et al., An approximate calculation of ratio of normal variables and its application in analog circuit fault diagnosis. J. Electron. Test. 29, 555–565 (2013)

    Article  Google Scholar 

  4. Y. Avargel, I. Cohen, Adaptive nonlinear system identification in the short-time Fourier transform domain. IEEE Trans. Signal. Process. 57(10), 3891–3904 (2009)

    Article  MathSciNet  Google Scholar 

  5. Y. Avargel, I. Cohen, Modeling and identification of nonlinear systems in the short-time Fourier transform domain. IEEE Trans. Signal. Process. 58(1), 291–304 (2010)

    Article  MathSciNet  Google Scholar 

  6. M. Catelani, A. Fort, Soft fault detection and isolation in analog circuits: Some results and a comparison between a fuzzy method and radial basis function networks. IEEE Trans. Instrum. Meas. 51(2), 196–202 (2002)

    Article  Google Scholar 

  7. J. Cui, Y. Wang, Analog circuit fault classification using improved one-against-one support vector machines. Metrol. Meas. Syst. 18(4), 569–582 (2011)

    Article  Google Scholar 

  8. Y. Deng, Y. Shi, W. Zhang, Diagnosis of incipient faults in nonlinear analog circuits. Metrol. Meas. Syst. 19(2), 203–218 (2012)

    Article  Google Scholar 

  9. C. Evans, D. Rees, L. Jones et al., Periodic signals for measuring nonlinear Volterra kernels. IEEE Trans. Instrum. Meas. 45(4), 362–371 (1996)

    Article  Google Scholar 

  10. G.O. Glentis, P. Koukoulas, N. Kalouptsidis, Efficient algorithms for Volterra system identification. IEEE Trans. Signal Process. 47(11), 3042–3057 (1999)

    Article  MATH  Google Scholar 

  11. D. Grzechca, Soft fault clustering in analog electronic circuits with the use of self organizing neural network. Metrol. Meas. Syst. 18(4), 555–568 (2011)

    Article  Google Scholar 

  12. D. Grzechca, J. Rutkowski, Fault diagnosis in analog electronic circuits—the SVM approach. Metrol. Meas. Syst. 16(4), 583–598 (2009)

    Google Scholar 

  13. Z. Guo, Coefficient-based test of parametric faults in analog circuits. IEEE Trans. Instrum. Meas. 55(2), 150–157 (2006)

    Article  Google Scholar 

  14. S. Huang, K.K. Tan, Fault detection and diagnosis based on modeling and estimation methods. IEEE Trans. Neural Netw. 20(5), 872–881 (2009)

    Article  MathSciNet  Google Scholar 

  15. R. Jeongjin, J.A. Abraham, Subband filtering for time and frequency analysis of mixed-signal circuit testing. IEEE Trans. Instrum. Meas. 53(2), 602–611 (2004)

    Article  Google Scholar 

  16. B. Jiang, P. Shi, Z. Mao, Sliding mode observer-based fault estimation for nonlinear networked control systems. Circuits Syst. Signal Process. 30, 1–16 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. B.H. Juang, L.R. Rabiner, Hidden Markov models for speech recognition. Technometrics 33(3), 251–272 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. A.Y. Kinbangou, G. Favier, Identification of parallel-cascade wiener systems using joint diagonalization of third-order Volterra kernel slices. IEEE Signal Process. Lett. 16(3), 188–191 (2009)

    Article  Google Scholar 

  19. R. Kodagunturi, E. Bradley, K. Maggard, Benchmark circuits for analog and mixed-signal testing, in Southeastcon’99 Proc of IEEE Kentuchy (1999), pp. 217–220

  20. P. Koukoulas, N. Kalouptsidis, Nonlinear system identification using Gaussian inputs. IEEE Trans. Signal Process. 43(8), 1831–1841 (1995)

    Article  MathSciNet  Google Scholar 

  21. B. Long, W. Xian, M. Li et al., Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance. Neurocomputing 133, 237–248 (2014)

    Article  Google Scholar 

  22. S. Majumdar, H. Parthasarathy, Wavelet-based transistor parameter estimation. Circuits Syst. Signal Process. 29, 953–970 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Pavan, Efficient simulation of weak nonlinearities in continuous-time oversampling converters. IEEE Trans. Circuits Syst. I Regul. Pap. 57(8), 1925–1934 (2010)

    Article  MathSciNet  Google Scholar 

  24. A. Pulka, Two heuristic algorithms for test point selection in analog circuit diagnosis. Metrol. Meas. Syst. 18(1), 115–128 (2011)

    Article  Google Scholar 

  25. L.R. Rabiner, B.H. Juang, An introduction to hidden Markov models. IEEE ASSP Mag. 3(1), 4–15 (1986)

    Article  Google Scholar 

  26. C.M. Rault, M.C.S. Antonio, Representation and measurement of nonlinearities in stimulus signals. IEEE Trans. Instrum. Meas. 52(4), 1160–1165 (2003)

    Article  Google Scholar 

  27. G.B. Trevor, A.G. Rafik, B. Franck, Nonlinear system identification using a subband adaptive Volterra filter. IEEE Trans. Instrum. Meas. 58(5), 1389–1397 (2009)

    Article  Google Scholar 

  28. P. Wang, S. Yang, A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math. IEEE Trans. Circuits Syst. I Regul. Pap. 52(10), 2118–2127 (2005)

    Article  MathSciNet  Google Scholar 

  29. M. Weiss, C. Evans, D. Rees, Identification of nonlinear cascade systems using paired multisine signals. IEEE Trans. Instrum. Meas. 47(1), 332–336 (1998)

    Article  Google Scholar 

  30. L.J. Xu, J.G. Huang, H.J. Wang et al., A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM. Circuits Syst. Signal Process. 29, 577–600 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Yang, X. Sheldon, Nonlinear transient and distortion analysis via frequency domain Volterra series. Circuits Syst. Signal Process. 25, 295–314 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. C. Yang, J. Yang, Z. Liu et al., Complex field fault modeling-based optimal frequency selection in linear analog circuit fault diagnosis. IEEE Trans. Instrum. Meas. 64(4), 813–825 (2014)

    Article  Google Scholar 

  33. J. Ying, T. Kirubarajan, K.R. Pattipati et al., A hidden Markov model-based algorithm for fault diagnosis with partial and imperfect tests. IEEE Trans. Syst. Cybern. 30(4), 463–473 (2000)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers and the editors for their constructive comments and suggestions. This work is supported by key research project of Sichuan Provincial Department of Education, China (13ZA0186)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Chai, G. Soft Fault Feature Extraction in Nonlinear Analog Circuit Fault Diagnosis. Circuits Syst Signal Process 35, 4220–4248 (2016). https://doi.org/10.1007/s00034-016-0265-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0265-z

Keywords

Navigation