Skip to main content
Log in

Stabilization for Positive Markovian Jump Systems with Actuator Saturation

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers stabilization for positive Markovian jump systems in the presence of actuator saturation. Firstly, we use a Lyapunov function approach and convex analysis to derive sufficient conditions for stochastic stability and positivity of the continuous- and discrete-time cases. Then, the state feedback controller design and the estimate of the domain of attraction are presented by solving a convex optimization problem with linear matrix inequalities. Finally, numerical examples are given to demonstrate the validity of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Ait Rami, D. Napp, Positivity of discrete singular systems and their stability. An LP-based approach. Automatica 50(1), 84–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Benzaouia, A. Hmamed, F. Mesquine, M. Benhayoun, F. Tadeo, Stabilization of continuous-time fractional positive systems by using a Lyapunov function. IEEE Trans. Automat. Control 59(8), 2203–2208 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. V.S. Bokharaie, O. Mason, On delay-independent stability of a class of nonlinear positive time-delay systems. IEEE Trans. Automat. Control 59(7), 1974–1977 (2014)

    Article  MathSciNet  Google Scholar 

  4. P. Bolzern, P. Colaneri, G. Nicolao, Stochastic stability of positive Markov jump linear systems. Automatica 50(4), 1181–1187 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Caccetta, V.G. Rumchev, A positive linear discrete-time model of capacity planning and its controllability properties. Math. Comput. Model. 40(1–2), 217–226 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Cao, Z.L. Lin, Stability analysis of discrete-time systems with actuator saturation by a saturation dependent Lyapunov function. Automatica 39(7), 1235–1242 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. X.M. Chen, J. Lam, P. Li, Z. Shu, \(l_1\)-induced norm and controller synthesis of positive systems. Automatica 49(5), 1377–1385 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. X.M. Chen, J. Lam, P. Li, Positive filtering for continuous-time positive systems under \({L}_{1}\) performance. Int. J. Control 87(9), 1906–1913 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. X.M. Chen, J. Lam, P. Li, S. Zhan, Output-feedback control for continuous-time interval positive systems under \({L}_{1}\) performance. Asian J. Control 16(6), 1592–1601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. X.M. Chen, J. Lam, H.K. Lam, Positive filtering for positive Takagi–Sugeno fuzzy systems under \({l}_{1}\) performance. Inf. Sci. 299, 32–41 (2015)

    Article  MathSciNet  Google Scholar 

  11. J.W. Dong, W.J. Kim, Markov-chain-based output feedback control for stabilization of networked control systems with random time delays and packet losses. Int. J. Control Autom. Syst. 10(5), 1013–1022 (2012)

    Article  Google Scholar 

  12. L. Fainshil, M. Margaliot, P. Chigansky, On the stability of positive linear switched systems under arbitrary switching laws. IEEE Trans. Automat. Control 54(4), 897–899 (2009)

    Article  MathSciNet  Google Scholar 

  13. L. Farina, S. Rinaldi, Positive Linear Systems: Theory and Applications (Wiley, New York, 2000)

    Book  MATH  Google Scholar 

  14. H.R. Feyzmahdavian, T. Charalambous, M. Johansson, Exponential stability of homogeneous positive systems of degree one with time-varying delays. IEEE Trans. Automat. Control 59(6), 1594–1599 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Fornasini, M.E. Valcher, Stability and stabilizability criteria for discrete-time positive switched systems. IEEE Trans. Automat. Control 57(5), 1208–1221 (2012)

    Article  MathSciNet  Google Scholar 

  16. X.H. Ge, Q.L. Han, Distributed fault detection over sensor networks with Markovian switching topologies. Int. J. Gen. Syst. 43(3–4), 305–318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Grimm, J. Hatfield, I. Postlethwaite, A.R. Teel, M.C. Turner, L. Zaccarian, Antiwindup for stable linear systems with input saturation: an LMI based synthesis. IEEE Trans. Automat. Control 48(9), 1509–1525 (2003)

    Article  MathSciNet  Google Scholar 

  18. E. Hernandez-Varga, P. Colaneri, R. Middleton, F. Blanchini, Discrete-time control for switched positive systems with application to mitigating viral escape. Int. J. Robust Nonlinear 21(10), 1093–1111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Kaczorek, Positive 1D and 2D Systems (Springer, London, 2002)

    Book  MATH  Google Scholar 

  20. H.K. Khalil, Nonlinear Systems (MacMillan, London, 1992)

    MATH  Google Scholar 

  21. H.Y. Li, Z. Chen, L. Wu, H.K. Lam, H. Du, Event–triggered fault detection of nonlinear networked systems. IEEE Trans. Cybern. doi:10.1109/TCYB.2016.2536750

  22. H.Y. Li, Y. Pan, P. Shi, Y. Shi, Switched fuzzy output feedback control and its application to mass–spring–damping system. IEEE Trans. Fuzzy Syst. doi:10.1109/TFUZZ.2015.2505332

  23. H.Y. Li, J. Wang, H.K. Lam, Q. Zhou, H. Du, Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans. Syst. Man Cybern. Syst. doi:10.1109/TSMC.2016.2531676

  24. P. Li, J. Lam, Z. Shu, \(H_\infty \) positive filtering for positive linear discrete-time systems: an augmentation approach. IEEE Trans. Automat. Control 55(10), 2337–2342 (2010)

    Article  MathSciNet  Google Scholar 

  25. H.Y. Li, H.G. Gao, P. Shi, X.D. Zhao, Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50(7), 1825–1834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. H.Y. Li, Y. Gao, P. Shi, H. Lam, Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Automat. Control (2015). doi:10.1109/TAC.2015.2503566

    Google Scholar 

  27. H.Y. Li, P. Shi, D.Y. Yao, L.G. Wu, Observer-based adaptive sliding mode control of nonlinear Markovian jump systems. Automatica (2015). doi:10.1016/j.automatica.2015.11.007

    MATH  Google Scholar 

  28. J. Lian, J. Liu, Y. Zhuang, Mean stability of positive Markov jump linear systems with homogeneous and switching transition probabilities. IEEE Trans. Circuits II 62(8), 801–805 (2015)

    Google Scholar 

  29. H.P. Liu, E.K. Boukas, F.C. Sun, D.W.C. Ho, Controller design for Markov jump systems subject to actuator saturation. Automatica 42(3), 459–465 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. X.W. Liu, Stability analysis of switched positive systems: a switched linear copositive Lyapunov function method. IEEE Trans. Circuits II 56(5), 414–418 (2009)

    Google Scholar 

  31. X.W. Liu, Constrained control of positive systems with delays. IEEE Trans. Automat. Control 54(7), 1596–1600 (2009)

    Article  MathSciNet  Google Scholar 

  32. X.W. Liu, W.S. Yu, L. Wang, Stability analysis for continuous-time positive systems with time-varying delays. IEEE Trans. Automat. Control 55(4), 1024–1028 (2010)

    Article  MathSciNet  Google Scholar 

  33. X.W. Liu, C.Y. Dang, Stability analysis of positive switched linear systems with delays. IEEE Trans. Automat. Control 56(7), 1684–1690 (2011)

    Article  MathSciNet  Google Scholar 

  34. W.H. Qi, X.W. Gao, \(L_1\) control for positive Markovian jump systems with time-varying delays and partly known transition rates. Circuits Syst. Signal Process. 34(8), 2711–2726 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. W.H. Qi, X.W. Gao, State feedback controller design for singular positive Markovian jump systems with partly known transition rates. Appl. Math. Lett. 46, 111–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. L.J. Shen, U. Buscher, Solving the serial batching problem in job shop manufacturing systems. Eur. J. Oper. Res. 221(1), 14–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Shen, J. Lam, \(L_\infty \)-gain analysis for positive systems with distributed delays. Automatica 50(1), 175–179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Shen, J. Lam, On \(l_\infty \) and \(L_\infty \) gains for positive systems with bounded time-varying delays. Int. J. Syst. Sci. 46(11), 1953–1960 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Shen, J. Lam, On static output-feedback stabilization for multi-input multi-output positive systems. Int. J. Robust Nonlinear 25(16), 3154–3162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Shorten, F. Wirth, D. Leith, A positive systems model of TCP-like congestion control: asymptotic results. IEEE/ACM Trans. Netw. 14(3), 616–629 (2006)

    Article  Google Scholar 

  41. Z. Shu, J. Lam, H.J. Gao, B.Z. Du, L.G. Wu, Positive observers and dynamic output-feedback controllers for interval positive linear systems. IEEE Trans. Circuits I 55(10), 3209–3222 (2008)

    Article  MathSciNet  Google Scholar 

  42. S. Tarbouriech, G. Garcia, João Manoel Gomes da Silva, Jr I. Queinnec, Stability and Stabilization of Linear Systems with Saturating Actuators (Springer, London, 2011)

    Book  MATH  Google Scholar 

  43. T. Wang, H. Gao, J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Net. Learn. 27(2), 416–425 (2015)

    Article  MathSciNet  Google Scholar 

  44. F. Wu, K.M. Grigoriadis, A. Packard, Anti-windup controller design using linear parameter-varying control methods. Int. J. Control 73(12), 1104–1114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. J.S. Zhang, Z.G. Deng, Y.W. Wang, Robust stability and stabilization of positive interval systems subject to actuator saturation. Asian J. Control 16(5), 1553–1560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Zhang, Z. Han, F. Zhu, Stochastic stability and stabilization of positive systems with Markovian jump parameters. Nonlinear Anal. Hybrid Syst. 12, 147–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. X.D. Zhao, L.X. Zhang, P. Shi, M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time. IEEE Trans. Automat. Control 57(7), 1809–1815 (2012)

    Article  MathSciNet  Google Scholar 

  48. J.J. Zhao, J. Wang, J.H. Park, H. Shen, Memory feedback controller design for stochastic Markov jump distributed delay systems with input saturation and partially known transition rates. Nonlinear Anal. Hybrid Syst. 15, 52–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Q. Zhou, P. Shi, Y. Tian, M. Wang, Approximation-based adaptive tracking control for MIMO nonlinear systems with input saturation. IEEE Trans. Cybern. 45(10), 2119–2128 (2014)

    Article  Google Scholar 

  50. S. Zhu, Q. Han, C. Zhang, \(l_1\)-gain performance analysis and positive filter design for positive discrete-time Markov jump linear systems: A linear programming approach. Automatica 50(8), 2098–2107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by Key Program of National Natural Science Foundation of China under Grant Nos. 61573088 and 61433004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhai Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Gao, X., Kao, Y. et al. Stabilization for Positive Markovian Jump Systems with Actuator Saturation. Circuits Syst Signal Process 36, 374–388 (2017). https://doi.org/10.1007/s00034-016-0307-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0307-6

Keywords

Navigation