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Abstract This paper investigates the effectiveness of factorial speech processing 

models in noise-robust automatic speech recognition tasks. For this purpose, the 

paper proposes an idealistic approach for modeling state-conditional observation 

distribution of factorial models based on weighted stereo samples. This approach is 

an extension to previous single pass retraining for ideal model compensation which 

is extended here to support multiple audio sources. Non-stationary noises can be 

considered as one of these audio sources with multiple states. Experiments of this 

paper over the set A of the Aurora 2 dataset show that recognition performance can 

be improved by this consideration. The improvement is significant in low signal to 

noise energy conditions, up to 4% absolute word recognition accuracy. In addition 

to the power of the proposed method in accurate representation of state-conditional 

observation distribution, it has an important advantage over previous methods by 

providing the opportunity to independently select feature spaces for both source and 

corrupted features. This opens a new window for seeking better feature spaces 

appropriate for noisy speech, independent from clean speech features. 
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1. Introduction 

Despite long term efforts and great successes in automatic speech recognition 

(ASR) systems, rapid degradation of performance in the presence of noise and other 

competing sources remains the Achilles Heel of these systems [2]. While some 

feature enhancement and model adaptation techniques loosely use noise source 

characteristics to increase the performance of speech recognition systems, model 

based methods try to incorporate as much as information they can acquire from 

noise sources [11]. Such information ranges from statistics of stationary noises to 

dynamic state transition patterns of cyclo-stationary noises. 

Factorial speech processing models [7, 17, 20] are extensions of Hidden Markov 

Models (HMM) which model audio sources and the way that these sources are 

combined in a generative manner. They model each of the audio sources separately; 

this can include modeling dynamic changes of audio sources by hidden Markov 

models. Additionally, factorial models model how these audio sources are 

combined to produce output or distorted features. For this reason, factorial models 

can incorporate more details of noise characteristics for improving robust-ASR 

system performance. 

Figure 1 shows a generic HMM for conventional acoustic modeling in speech 

recognition and a factorial model for noise robust speech recognition. Models are 

expressed in the Probabilistic Graphical Models (PGM) language. The depicted 

HMM is extended in two ways for creating a factorial model of speech processing. 

First, factorial models have multiple state chains which are useful for modeling 

systems with multiple underlying independent processes [3], i.e. two audio sources 

with their corresponding temporal state changes (in Fig. 1.b 𝑠𝑡
𝑛 and 𝑠𝑡

𝑥 are noise and 

speech source state variables). These multiple chains with their observation models 

construct source models of factorial models (see Fig. 1.b). Gaussian Mixture 

Models are usually used for representing the observation models. Increasing the 

number of underlying Markov chains increases the computational requirements of 

inference, exponentially. This is known as one of the challenges in factorial models 

[12]. The second extension is the interaction model, [11]; the distribution of the 

observed signal feature conditioned on features of its corresponding sources. In Fig. 

1.b CPD of 𝑝(𝒚𝑡|𝒙𝑡, 𝒏𝑡) represents it. This CPD in its deterministic form is called 

mismatch function [8, 22]; 𝑝(𝒚𝑡|𝒙𝑡, 𝒏𝑡) = 𝛿(𝒚𝑡 − 𝑓(𝒙𝑡, 𝒏𝑡)). 
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Fig. 1.  a) A generic HMM for acoustic modeling, b) Factorial speech processing model for robust-ASR 
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The interaction model is not directly used in the inference. Inference on factorial 

models requires State-Conditional Observation Distribution (SCOD); i.e. observed 

feature distribution conditioned on states of the source chains, 𝑝(𝒚𝑡|𝑠𝑥, 𝑠𝑛). This 

distribution is directly calculated by marginalizing-out source feature variables, i.e. 

∬ 𝑝(𝒚, 𝒙, 𝒏|𝑠𝑥, 𝑠𝑛)𝑑𝒙𝑑𝒏. The direct calculation of SCOD causes more challenges 

in use of factorial models which necessitates additional approximations. As a result, 

having more accurate interaction models leads to more approximations to the 

SCOD calculation. On the other hand, doing exact SCOD calculations forces us to 

use approximate interaction models. 

The current paper focuses on the second challenge of factorial models by 

incorporating the idea of single-pass retraining [8, 24] for ideal SCOD 

representation. In addition, it presents a modified expectation maximization (EM) 

algorithm for parametric modeling of this ideal SCOD. In fact, the procedure behind 

the proposed method for SCOD modeling inherently resolves the need for using 

mismatch function and direct calculation of the SCOD. Therefore, none of the two 

approximations mentioned above are involved in the created models by the 

proposed method. This increases the accuracy of the created SCOD models.  

Next section briefly reviews previous methods for modeling the SCOD by 

starting with the description of the commonly used environment model and the most 

applicable mismatch function for speech recognition. Its last subsection presents 

probabilistic inference of factorial models of speech processing. In addition, it 

discusses the computational complexity of inference in these models. The proposed 

method of SCOD modeling is proposed in section 3; in this section, an extension of 

the EM algorithm for parametric modeling of SCODs is described. Section 4 

describes experiments by providing a block diagram of the proposed method and 

implementation details for different test scenarios; Aurora 2 dataset is used for this 

evaluation. Section 5 presents the evaluation results and finally the last section 

concludes the paper. 

We believe that unified view of this paper for SCOD modeling based on the past 

model compensation techniques in addition to its proposed method provides 

valuable insight into the factorial models of speech processing.  

2. Background 

In model based noise-robust ASR methods, the following relation is considered 

between speech and noise signals in an assumed environment for generation of 

distorted speech signals [5, 7]: 

 𝑦 =  𝑥 ∗ ℎ +  𝑛 (1) 

where 𝑥 and 𝑛 are speech and noise signals and ℎ is the channel model of the 

recording environment. In the power spectrum domain after framing and 

windowing by short-term discrete Fourier transform we have: 

 |𝒀𝑡|2  = |𝑿𝑡𝑯|2 + |𝑵𝑡|2 + 2|𝑿𝑡𝑯||𝑵𝑡| 𝑐𝑜𝑠(𝝓𝑡) (2) 
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in which 𝝓𝑡 is the vector of phase difference between frequency bins of 𝑿𝑡𝑯 and 

𝑵𝑡 complex vectors. In addition, 𝑿𝑡 and 𝑵𝑡 are extracted from the frame 𝑡 of their 

corresponding time signals. In (2), frequency index is omitted since variables are 

written in the vector form; it will be provided in subsequent relations where needed. 

Time index will be removed in subsequent expressions for brevity. 

While (2) provides a mismatch function useful for speech enhancement 

applications, power spectrum is not appropriate for speech recognition. By applying 

filterbank, the following relation is extracted for filterbank energies of sources and 

corrupted signals (this derivation is based on an approximation in which the channel 

model is considered to have a flat frequency response for each filter in the 

filterbank) [22]: 

 �̅�𝑖 = �̅�𝑖�̅�𝑖 + �̅�𝑖 + 2𝛼𝑖√�̅�𝑖�̅�𝑖�̅�𝑖 (3) 

where �̅�𝑖 denotes weighted averaged power spectrum energy obtained from the 𝑖th 

filter as: 

 �̅�𝑖 = ∑ 𝑤𝑖𝑘|𝑌𝑘|𝑘
2 (4) 

where 𝑘 is the frequency bin index and 𝑤𝑖𝑘 is the 𝑖th filter weights across different 

frequency bins, 𝑘. Filterbank energies for clean speech and noise frames are also 

calculated similar to distorted speech; i.e. �̅�𝑖 = ∑ 𝑤𝑖𝑘|𝑋𝑘|𝑘
2
, �̅�𝑖 = ∑ 𝑤𝑖𝑘|𝑁𝑘|𝑘

2
. 

In (3), 𝛼𝑖 is called the phase factor which reflects effect of phase difference 

between the sources, averaged by the 𝑖th filter in different frequency bins which 

equals to: 

 𝛼𝑖 = ∑ 𝑤𝑖𝑘|𝑋𝑘||𝐻𝑘||𝑁𝑘| 𝑐𝑜𝑠(𝜙𝑘)𝑘 √�̅�𝑖�̅�𝑖⁄  (5) 

By considering uniform distribution for phase difference, 𝛼𝑖 becomes a 

stochastic variable whose support set is [-1, 1]; more of its properties is investigated 

in [14]. Using the logarithm and truncated discrete cosine transform matrix (DCT), 

the following interaction model is derived for MFCC features: 

 𝑝(𝒚𝑐|𝒙𝑐 , 𝒉𝑐 , 𝒏𝑐) = 𝛿 (𝒚𝑐 − 𝐂 𝐥𝐨𝐠 (𝐞𝐱𝐩(𝐂−𝟏(𝒙𝑐 + 𝒉𝑐)) + 𝐞𝐱𝐩(𝐂−𝟏𝒏𝑐) + 𝝐(𝒙𝑐 , 𝒉𝑐 , 𝒏𝑐))) (6) 

where its residual equals to: 

 𝝐(𝒙, 𝒉, 𝒏) = 2𝜶 𝐞𝐱𝐩(𝐂−𝟏(𝒙 + 𝒉 + 𝒏)/2) (7) 

Interaction models useful for speech recognition applications contain this 

residual. The interaction model is usually approximated by removing the residual 

[15] or considering its phase factor as constant which has the same value across all 

frequency bins [16].  To the best of our knowledge, almost all model compensation 

techniques were developed based on these interaction models by accepting the 

mentioned approximations. The proposed method of this work resolves the need for 

using mismatch function since its SCOD model is not directly calculated by the 

interaction models. Therefore its derived SCOD models are not extracted by several 

approximations involved in developing interaction models. 
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2.1. State-conditional observation distribution 

As mentioned earlier, the interaction model is not directly used in inference of 

factorial models. Instead, by marginalizing source features as in (8), the state-

conditional observation distribution is calculated for inference. 

𝒑(𝒚|𝒔𝒙, 𝒔𝒏) = ∬ 𝒑(𝒚, 𝒙, 𝒏|𝒔𝒙, 𝒔𝒏)𝒅𝒙𝒅𝒏 = ∬ 𝒑(𝒚|𝒙, 𝒏)𝒑(𝒙|𝒔𝒙)𝒑(𝒏|𝒔𝒏)𝒅𝒙𝒅𝒏 (8) 

Direct calculation of (8) is performed for raw feature domains by considering 

some approximations in mismatch function. Two examples are max and soft-max 

approximation for log-power-spectral features [11, 19]. But this domain is not 

appropriate for speech recognition. Therefore, three categories of approaches are 

used for SCOD modeling. Approaches in the first set, by making an assumption 

that the SCOD is Gaussian in specific feature domains, estimate Gaussian 

parameters. Parallel model combination (PMC) is an example of this group [9]. 

Methods in the second set, approximate the non-linear mismatch function by 

linearizing it around an expansion point using Taylor series; then they transform 

source model parameters by applying this approximation. Several variations of 

these methods were developed so far. A successful and complete vector Taylor 

series (VTS) based compensation method is presented in [16]. The third set uses 

conditional samples of observation distribution for estimating parameters of the 

SCOD model which is usually modeled by Gaussian Mixture Models (GMM). 

Samples are generated by forward sampling and consequent use of mismatch 

function. Developed methods in this set are known as variations of data-driven 

PMC [8] (DPMC). 

Next sub-sections describe VTS and DPMC based SCOD modeling adopted for 

factorial speech processing models. Most of the previous works support only 

stationary noises and therefore consider one noise state in their SCOD models. 

Actually, in this case, clean source models are replaced with their corresponding 

SCODs; it means replacing observation models of the original HMM. This is the 

reason for naming this kind of robust speech recognition, “model compensation” 

[22]. However this work considers noises with multiple states and re-state previous 

methods, supporting non-stationary noises. 

2.1.1  VTS based SCOD models 

In the VTS based methods, mismatch function is approximated by the first order 

Taylor series expanded around source mean vectors, (𝒙0 = 𝝁𝒙, 𝒉0 = 𝝁𝒉, 𝒏0 = 𝝁𝒏). 

Therefore for mismatch function of (6) in the form of 𝒚 = 𝒇(𝒙, 𝒉, 𝒏), we have: 

 𝒚 ≈ 𝒇(𝒙𝟎, 𝒉𝟎, 𝒏𝟎) +
𝝏𝒇

𝝏𝒙
(𝒙 − 𝒙𝟎) +

𝝏𝒇

𝝏𝒉
(𝒉 − 𝒉𝟎) +

𝝏𝒇

𝝏𝒏
(𝒏 − 𝒏𝟎) (9) 

The above linear approximation transforms source model Gaussians into the 

corrupted feature space. For each state of speech and noise, we have the following 

SCOD by selecting their corresponding mean vectors as the expansion point: 

 𝒑(𝒚|𝒔𝒙 = 𝒊, 𝒔𝒏 = 𝒋)~𝓝(𝒚; 𝝁𝒊 + 𝝁𝒉 + 𝒈(𝝁𝒊, 𝝁𝒉, 𝝁𝒋), 𝐆𝚺𝐢𝐆
𝐓 + 𝐅𝚺𝐣𝐅

𝐓) (10) 
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in which 𝒈(𝒙, 𝒉, 𝒏) = 𝐂 𝐥𝐨𝐠 (𝐞𝐱𝐩(𝐂−𝟏(𝒙 + 𝒉)) + 𝐞𝐱𝐩(𝐂−𝟏𝒏) + 𝝐(𝒙, 𝒉, 𝒏)), 𝐆 =

𝝏𝒇

𝝏𝒙
, and 𝐅 =

𝝏𝒇

𝝏𝒏
. For source models with GMM observation distribution, the SCOD 

can be conditioned on each source component distribution. Additionally for delta 

and delta-delta coefficient the SCOD parameters are extracted as follows: 

 𝒑(𝒚𝜟|𝒔𝒙 = 𝒊, 𝒔𝒏 = 𝒋)~𝓝(𝒚𝜟; 𝐆𝝁𝜟𝒊 + 𝐅𝝁𝜟𝒋, 𝐆𝚺𝚫𝐢𝐆
𝐓 + 𝐅𝚺𝚫𝐣𝐅

𝐓) (11) 

 𝒑(𝒚𝜟𝜟|𝒔𝒙 = 𝒊, 𝒔𝒏 = 𝒋)~𝓝(𝒚𝜟𝜟; 𝐆𝝁𝜟𝜟𝒊 + 𝐅𝝁𝜟𝜟𝒋, 𝐆𝚺𝚫𝚫𝐢𝐆
𝐓 + 𝐅𝚺𝚫𝚫𝐣𝐅

𝐓) (12) 

Detail derivation of these expressions for single state noise models can be found 

in [16, 22]; extending them for multiple noise states is straightforward. 

2.1.2  DPMC based SCOD models 

In data-driven parallel model combination (DPMC) methods, by using forward 

sampling, state-conditional observed feature samples are extracted to be used for 

SCOD modeling. First, source states are fixed; i.e. 〈𝑠𝑥 = 𝑖, 𝑠𝑛 = 𝑗〉. Then based on 

the fixed states and use of source models, conditional source features are generated. 

Now by use of an appropriate mismatch function, observed features are extracted 

from the source features (𝒚𝑙|𝑖,𝑗 = 𝒇(𝒙𝑙|𝑖,𝑗 , 𝒏𝑙|𝑖,𝑗)). These samples can represent an 

empirical SCOD as follows: 

 𝒑(𝒚|𝒔𝒙 = 𝒊, 𝒔𝒏 = 𝒋) =
𝟏

𝑳
∑ 𝜹(𝒚𝒍|𝒊,𝒋 − 𝒚)𝑳

𝒍=𝟏  (13) 

where 𝐿 is the number of samples and 𝛿 is Dirac delta function. At this step, 

parametric model of SCOD can be trained using state-conditional samples. This 

model may consist of single Gaussian or multiple Gaussians where the method is 

named DPMC and iterative-DPMC (IDPMC), respectively [8, 22]. 

2.2. Inference 

In factorial models with multiple hidden Markov chains such as models that are 

used in multi-talker speech recognition and robust speech recognition tasks, the 

objective of inference is to find the most probable source states given the 

observation feature vectors, i.e.: 

 𝒔𝟏:𝑻
∗𝒙,𝒏  = argmax

𝒔𝟏:𝑻
𝒙,𝒏

𝒑(𝒔𝟏:𝑻
𝒙,𝒏|𝒚𝟏:𝑻) (14) 

where in the noise robust speech recognition tasks, noise states are discarded since 

only speech states are used in the recognition. 

Finding the most probable states conditioned on observation vectors is done by 

a two-dimensional Viterbi search. Naïve implementation requires likelihood 

evaluation of (𝑆𝑥𝑆𝑛)𝑇 different paths among source states. By creating a mega-

state HMM from factorial HMM, the number of operations reduces to 

𝑂(𝑇(𝑆𝑥𝑆𝑛)2).  In mega-state HMM, a new state variable is defined by Cartesian 

product of the source states. Thus, similar to HMM, decoding requires 𝑂(𝑇𝑆2) 

operations, where 𝑆 = 𝑆𝑥𝑆𝑛. But by using a two-dimensional Viterbi search, this 
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reduces to 𝑂(𝑇𝑆2𝑥𝑆𝑛). The following recursions are used in a two-dimensional 

Viterbi search to find the most probable speech states: 

 𝝉𝒕(𝒔𝒕
𝒙, 𝒔𝒕+𝟏

𝒏 ) = max
𝒔𝒕

𝒏
𝑷(𝒔𝒕+𝟏

𝒏 |𝒔𝒕
𝒏)𝒑(𝒚𝒕|𝒔𝒕

𝒙, 𝒔𝒕
𝒏)𝝉𝒕−𝟏(𝒔𝒕

𝒙, 𝒔𝒕
𝒏) (15) 

 𝝉𝒕(𝒔𝒕+𝟏
𝒙 , 𝒔𝒕+𝟏

𝒏 ) = max
𝒔𝒕

𝒙
𝑷(𝒔𝒕+𝟏

𝒙 |𝒔𝒕
𝒙) 𝝉𝒕(𝒔𝒕

𝒙, 𝒔𝒕+𝟏
𝒏 ) (16) 

in which 𝑃(𝑠𝑡+1
𝑛 |𝑠𝑡

𝑛) and 𝑃(𝑠𝑡+1
𝑥 |𝑠𝑡

𝑥) are transition probabilities in source Markov 

chains and 𝑝(𝒚𝑡|𝑠𝑡
𝑥, 𝑠𝑡

𝑛) is the SCOD. Recursions start with: 

 𝝉𝟎(𝒔𝟏
𝒙, 𝒔𝟏

𝒏) = 𝑷(𝒔𝟏
𝒙)𝑷(𝒔𝟏

𝒏) (17) 

Similar to conventional Viterbi algorithm, in each step, a back-pointer is used to 

determine target state sequence: 

 𝝓𝒕(𝒔𝒕
𝒙, 𝒔𝒕+𝟏

𝒏 ) = argmax
𝒔𝒕

𝒏
𝑷(𝒔𝒕+𝟏

𝒏 |𝒔𝒕
𝒏)𝒑(𝒚𝒕|𝒔𝒕

𝒙, 𝒔𝒕
𝒏)𝝉𝒕−𝟏(𝒔𝒕

𝒙, 𝒔𝒕
𝒏) (18) 

 𝝓𝒕(𝒔𝒕+𝟏
𝒙 , 𝒔𝒕+𝟏

𝒏 ) = argmax
𝒔𝒕

𝒙
𝑷(𝒔𝒕+𝟏

𝒙 |𝒔𝒕
𝒙) 𝝉𝒕(𝒔𝒕

𝒙, 𝒔𝒕+𝟏
𝒏 ) (19) 

For more details on the two chain models or general cases of algorithm, the 

reader is referred to [12] or [3, 10] respectively. In fact, in this case, dynamic 

programming is run also within time-slices in addition to the standard Viterbi 

algorithm which only runs between time-slices. This is the reason for the reduction 

of computations by a factor of  𝑆𝑛.  

3. The proposed method 

The proposed method in this paper solves the problem of modeling state-conditional 

observation distribution in a way different from previous methods. In our method, 

there is no use of interaction function, therefore this method is not limited to 

enforcements of the interaction functions such as accordance of feature spaces. The 

procedure for parametric SCOD modeling is described in the next three subsections. 

3.1. Sampling corrupted features 

Sampling of corrupted features is started from source signals in time domain. At 

the first step, segments of source signals are combined together by the freely 

assumed environment model (such as (1)) to make the corrupted speech in the time 

domain, 𝑦. Then, the corresponding features are extracted from these time domain 

signals, i.e. 𝒙𝑙, 𝒏𝑙 and 𝒚𝑙 are 𝑙th sources and corrupted features. These feature 

vectors are known as stereo features [1, 15]. We also call them “stereo” due to one 

to one mapping between these features. However, in this case, three sets of features 

are related together. 

In the next step, source features are examined in their corresponding source 

models to compute their state-conditional likelihoods, (𝑝(𝒙𝑙|𝑖) and 𝑝(𝒏𝑙|𝑗)) for all 

source states. Finally, the time domain segments and source feature vectors are 

discarded. Samples of 𝒚 and their source state-conditional likelihoods will be used 

for the modeling later. 
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To summarize, as shown in Fig. 2, the input for creating corrupted feature 

vectors are source signals and the environment model to combine these signals. 

Feature vectors are then extracted from all signals, independent from each other. 

Source feature state-conditional likelihoods are also calculated for weighting 

corrupted features, later. 

 
Fig. 2.  Extraction of corrupted speech features and empirical SCOD based on the weighted features. As we 

can see, extracted samples using the proposed method are generated neither by forward sampling nor by use of 

approximated mismatch functions as in the previous data-driven methods. 

3.2. Empirical distribution 

Since in the sampling procedure there is no fixed source states, samples of 𝒚 are 

extracted from non-conditional observation distribution (the corrupted feature 

space). Comparing to data-driven PMC methods, these samples cannot be used 

directly for SCOD modeling. We use importance sampling scheme [18] to correct 

bias occurred by non-conditional samples for modeling the SCOD using particle 

weights which indicates association of particles to states. Particle weights are 

calculated in each source spaces as follows: 

 𝒘𝒍|𝒊 = 𝒑(𝒙𝒍|𝒊) 𝒑(𝒙𝒍)⁄ = 𝒑(𝒙𝒍|𝒊) ∑ 𝒑(𝒙𝒍|𝒊)𝒑(𝒊)𝒊⁄  (20) 

 𝒘𝒍|𝒋 = 𝒑(𝒏𝒍|𝒋) 𝒑(𝒏𝒍)⁄ = 𝒑(𝒏𝒍|𝒋) ∑ 𝒑(𝒏𝒍|𝒋)𝒑(𝒋)𝒋⁄  (21) 

By assuming independence of the sources (which is true for many additive noise 

environments), we have: 

 𝒘𝒍|𝒊,𝒋 = 𝒘𝒍|𝒊𝒘𝒍|𝒋 (22) 

Now the SCOD can be modeled empirically by the weighted particles as follows: 

 𝒑(𝒚|𝒊, 𝒋) = ∑ 𝒘𝒍|𝒊,𝒋𝜹(𝒚𝒍 − 𝒚)𝑳
𝒍=𝟏  (23) 

where 𝒚𝑙 is the 𝑙th particle sampled from 𝑝(𝒚) and 𝑤𝑙|𝑖,𝑗 is its adjusting weight for 

𝑝(𝒚|𝑖, 𝑗). By iterating 𝑖 and 𝑗 through their corresponding random variable support 

set and calculating 𝑤𝑙|𝑖,𝑗, the empirical SCOD is extracted for the all source states. 

Therefore in the proposed method the SCOD is represented by a set of weighted 

corrupted samples, where the weights are calculated by evaluation of their 

corresponding stereo features in the corresponding source models. We call this 

Speech features, 

Noise features, 

Corrupted Speech features, 

Environment 
Model

… … … … … …

Noise State-Conditional 
Likelihoods, 

Speech State-Conditional 
Likelihoods, 

Speech Signal, 

Noise Signal, Noisy Signal, 
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procedure SCOD modeling using weighted stereo samples, WSS method which is 

illustrated in the Fig. 2. 

Comparing WSS empirical distribution to empirical distribution of IDPMC, we 

can observe that while the extracted samples in IDPMC are equally weighted they 

are extracted using the approximated mismatch functions. In the proposed method, 

samples are directly extracted from the corrupted signal without any use of the 

mismatch function and then are weighted for modeling the observation distribution 

conditioned on source states. Therefore the constructed empirical distribution based 

on the proposed method is more close to the true SCOD comparing to other methods 

which are based on approximated mismatch functions. This claim will be 

investigated in the experiments. 

Note that for the channel effect, while in the assumed environment model such 

as (1), ℎ remains constant which means that channel characteristics does not change 

quickly, the above particle weights are still applicable. For the cases where there is 

multiple channel states, particle weights can also be conditioned on channel state 

as well as source states. Deriving this extension is straightforward. 

3.3. Parametric distribution 

The empirical distribution cannot be used directly in the recognition application and 

parametric model of the SCOD is needed for inference. The SCOD may be modeled 

parametrically by single or multiple component Gaussians as in the conventional 

acoustic modeling. Parameter estimation of single Gaussian models can be done by 

maximum weighted likelihood estimators [23] as: 

 argmax
𝜃

∏ 𝑝𝑤𝑙|𝑖,𝑗(𝒚𝑙; 𝜃)𝐿
𝑙=1  (24) 

Therefore Gaussian parameters are estimated by weighted samples as follows: 

 �̂�𝑖,𝑗 = (∑ 𝑤𝑙|𝑖,𝑗𝒚𝑙
𝐿
𝑙=1 ) 𝑤𝑖,𝑗⁄  (25) 

 �̂�𝑖,𝑗 = (∑ 𝑤𝑙|𝑖,𝑗(𝒚𝑙 − �̂�𝑖,𝑗)(𝒚𝑙 − �̂�𝑖,𝑗)
𝑇𝐿

𝑙=1 ) 𝑤𝑖,𝑗⁄  (26) 

in which 𝑤𝑖,𝑗 = ∑ 𝑤𝑙|𝑖,𝑗
𝐿
𝑙=1 . Depending on feature space, single Gaussian 

component may not be sufficient for SCOD modeling. In these cases, GMM is used 

as a more flexible modeling tool. While the EM algorithm is used for training 

GMMs, the standard algorithm does not support weighted samples. Because of this, 

the algorithm is extended to support weighted samples. 

Consider the following 𝑄-function as the expected value of weighted complete-

data log likelihood. In this 𝑄-function the expectation is taken over the posterior of 

the latent variable for supporting weighted samples (state indices are omitted for 

brevity of notation): 

 𝒬(𝜃, 𝜃′) = 𝔼𝑧|𝒚;𝜃′[ln ℒ(𝒚1:𝐿 , 𝑤1:𝐿 , 𝑧1:𝐿; 𝜃)] = ∑ 𝑤𝑙𝔼[ln 𝑝(𝒚𝑙, 𝑧𝑙; 𝜃)]𝐿
𝑙=1  (27) 

For mixture of Gaussians with 𝜃 = (𝝁1:𝐾, 𝚺1:𝐾, 𝝅) in which 𝜋𝑘 is the 

component’s prior, the 𝑄-function becomes: 

 ∑ 𝑤𝑙 ∑ 𝛾𝑙(𝑘)[ln 𝑝(𝒚𝑙; 𝝁𝑘, 𝚺𝑘) + ln 𝜋𝑘]𝐾
𝑘=1

𝐿
𝑙=1  (28) 
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where 𝑘 is index of Gaussian component in the mixture and 𝛾𝑙(𝑘) is defined as the 

𝑘th component responsibility to the 𝑙th sample based on old parameters (𝜃′) as 

follows: 

 𝛾𝑙(𝑘) ≝ 𝑃(𝑧 = 𝑘|𝒚𝑙; 𝜃′) (29) 

In fact, this posterior is the outcome of the E-step of the EM algorithm 

(calculation of component responsibilities is provided in the appendix A). Equation 

(27) is weighted version of the standard EM 𝑄-function for supporting weighted 

samples. This 𝑄-function must be optimized with respect to 𝜃, new parameter set, 

during the M-step of the EM algorithm. Optimizing the 𝑄-function with respect to 

new parameters leads to the following parameter update equations (detailed 

derivation is provided in the paper appendix A): 

 𝝁𝑘 = (∑ 𝑤𝑙𝛾𝑙(𝑘)𝒚𝑙
𝐿
𝑙=1 ) 𝑊𝑘⁄  (30) 

 𝚺𝑘 = (∑ 𝑤𝑙𝛾𝑙(𝑘)(𝒚𝑙 − 𝝁𝑘)(𝒚𝑙 − 𝝁𝑘)𝑇𝐿
𝑙=1 ) 𝑊𝑘⁄  (31) 

 𝜋𝑘 = 𝑊𝑘 𝑊⁄  (32) 

in which 𝑊𝑘 = ∑ 𝑤𝑙𝛾𝑙(𝑘)𝐿
𝑙=1  and 𝑊 = ∑ 𝑤𝑙

𝐿
𝑙=1 . By applying the extended EM 

algorithm, weighted “stereo” samples can be used to model the SCOD for all source 

states. Again, note that in the above formulae, source state subscripts are removed 

for brevity. 

4. Experiment Setups 

The Aurora 2 task [13] for recognizing utterances of digit series corrupted by 

additive and convolutive noises is selected for evaluating the effectiveness of the 

proposed method. This task has three test sets: A, B and C and our method is 

evaluated using set A. Set A is designed to test robustness of recognition methods 

against additive noises considering this point that the noise information could be 

used during the training phase. In this test set, four noises are artificially added to 

8440 clean utterances. Corrupted utterances are used during the training phase for 

multi-condition training scenario and the same noises are used for creation of the 

test set. The four noises are Subway, Babble, Car and Exhibition which are 

artificially added to clean utterances in different signal to noise ratios (SNR) 

varying from 20 dB to -5 dB in -5 dB steps. 

Before describing the details of the conducted experiments, the procedure of the 

proposed method for noise-robust ASR applications is described; Figure 3 shows 

its block diagram. Three main phases of this procedure are: source modeling, SCOD 

modeling and test. In the source modeling, speech and noise models are trained 

from clean speech utterances and noise signals. Source model parameters are state 

priors and transition matrices (𝜋, 𝐴) and parameters of the GMM observation 

models which are Gaussian means (𝝁𝑖), covariance matrices (𝚺𝑖) and component 

weights (𝑀𝑖). 

In the next step, SCOD models are trained based on weighted “stereo” feature 

samples. Sampling procedure is described in section 3.1 and sample weights are 

calculated by (20), (21) and (22). Then the SCOD models are trained by weighted 
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“stereo” samples using the proposed extended EM algorithm. SCOD parameters are 

the same as HMM observation model parameters except that SCOD models are 

conditioned on both sources. 

Finally, in the test phase, features of the test utterance are extracted and state-

conditional observation likelihoods are calculated to perform decoding using the 

two-dimensional Viterbi algorithm. 

Speech Models
(π, A, mi, Si, Mi)

Noise Model
(π, A, mj, Sj)

weighted “stereo” features
xl, wl|i, nl, wl|j, yl, wl|i,j

Environment Model

Source Modeling Modeling SCODs

SCOD models
(mi,j, Si,j, Mi,j)

Test

state-conditional 
observation likelihoods

p(yt|i,j),  " t1:T, i,j 

Feature extraction, yt Decoding

 
Fig. 3.  Block diagram of the proposed method for SCOD modeling and decoding using factorial speech 

processing models. 

4.1. Source modeling, Clean Speech Models 

Speech source models are created using the HTK toolkit [24]. Models are trained 

by the Aurora 2 standard recognition scripts [13] in clean condition training mode, 

except that for the front-end we use Voicebox toolbox [4]. Framing and windowing 

are done similar to the standard Aurora 2 recognition scripts. 

For comparing the performance of the ideal SCOD models trained by the WSS 

method to previous methods, we first limit ourselves to Mel-Frequency Cepstral 

Coefficients (MFCC). While the proposed method for SCOD modeling allows us 

independently select feature spaces of source and observed features. 

Since second order derivatives of MFCCs provide no significant improvements 

in the experiments we only use first order derivatives. Instead of frame’s logarithm 

of energy, zero order coefficient of MFCC features is used. In addition, the applied 

filterbank to power spectrum only contains 13 filters which enables us to use full 

DCT matrix in feature extraction and normal inverse of DCT matrix in the 

mismatch functions. Feature spaces of speech, noise and corrupted signals are 

selected to be the same with 26 coefficients (MFCC0d(26)), 13 MFCCs with their 

first order derivatives. 

For each digit of the dataset, a sixteen state HMM model is trained using the 

Aurora 2 standard scripts and for silence and short pause, three and one state HMMs 

are used. Observation models of digits have three component GMMs while silence 

and short pause models use six component GMMs, all with diagonal covariance 

matrices. 

4.2. Source Modeling, Noise Models 

For evaluating effectiveness of factorial models in speech processing for handling 

non-stationary noises, two sets of noise models are used in the experiments. In the 
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first set, each noise model has only one multivariate Gaussian. Models trained in 

the first set are not appropriate for non-stationary noises, since they have only one 

multivariate Gaussian and they have only one state. 

Noise models of the second set are created by STACS tool [21] and noise 

modeling is done for each noise separately. This tool starts with single state model 

and increases HMM states to find the best model selected by the BIC criterion. Each 

state has a multivariate Gaussian with diagonal covariance matrix for its 

observation distribution. Trained models for Subway, Babble, Car, and Exhibition 

noises contain 3, 8, 4 and 4 states accordingly which is optimized by the STACS 

tool. Models of the first and second sets are used in the experiments based on VTS, 

IDPMC and the proposed WSS SCOD modeling technique. 

4.3. Modeling state-conditional observation distributions 

Three SCOD modeling techniques were presented in this paper and are compared 

together in the experiments. These include VTS and IDPMC based models and 

models created by the proposed method, WSS. 

In the experiments, channel effect is not considered explicitly, therefore channel 

impulse response is removed from the environment model of (1). Consequently, 

channel feature vectors are removed from all of mismatch functions and the VTS 

based SCOD models. The reason is that in the test set A of the dataset there is no 

mismatch in noise environment in the training and test phases. 

For the VTS based experiments, SCOD models are extracted for each Gaussian 

component of speech and noise states. This is done by use of (10) and (11) where 

the two alpha values are selected in the residual term (discussed later). 

For the IDPMC based models, generated samples are extracted from source state 

GMMs. Then based on these conditional samples, three component block diagonal 

GMMs are trained for each joint states  (𝑀 = 3). 

For the proposed method about 17000 speech utterances from train set of dataset 

are used for creating “stereo” features. These utterances are selected randomly from 

the clean train set of the dataset. Random segment of the corresponding noise is 

selected to create corrupted utterances based on (1), ignoring the channel effect. 

Gain coefficient is adjusted to simulate SNRs from -5 dB to 20 dB including 

infinity. Voice activity detection and speech energy determination is done by the 

tools provided in the Voicebox [4], based on ITU recommendation P.56 (similar to 

the Aurora 2 test sets). Number of mixture components for modeling of SCOD is 

determined experimentally and is set to three for GMMs (𝑀 = 3) with full 

covariance matrices. 

5. Results 

In the first experiment, performance of compensated system (single noise state 

factorial model) based on IDPMC and VTS based SCOD models for two alpha 

values (equation (5)) are compared. Use of two selected alpha values enables us to 

evaluate the mentioned methods based on mismatch functions in two extreme 
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conditions. By setting the alpha equal to zero, we ignore the effect of phase factor 

in interaction model of (6). The second alpha value is selected to be the same as in 

[16] which yields its best results. Average word recognition accuracy for four noises 

of set A against different SNRs for two selected alpha values are plotted in Fig. 4. 

 

  
Fig. 4.  Average recognition performance of compensated systems based on VTS and IDPMC SCOD models 

for different alpha values on set A of the Aurora 2 dataset over four noises. 

As mentioned in [16] selecting alpha to invalid constant 2.5 (invalid regarding 

to its support set which is [−1, 1]), provides better result than ignoring it, both in 

VTS and IDPMC based models but with less effect in the IDPMC. Therefore the 

alpha value is set to 2.5 for further experiments. Additionally we observed that 

IDPMC based models yield higher recognition rate than VTS models.  

In the next experiment the proposed method for training ideal SCOD models is 

compared to VTS and IDPMC methods. The experiment is done for single noise 

state and multiple noise states. Figure 5.a shows the comparison by average word 

recognition accuracy over four noises in the single noise state mode. In addition, 

Fig. 5.b shows absolute improvement in average recognition accuracy for these 

three methods when multiple noise states are used. 

Moreover, Fig 5.a shows the performance of multi-conditioned trained system 

against three compensation approaches. This shows that even for one noise state, 

the performance of compensated system is greater than multi-conditioned trained 

system especially in low SNR conditions.  

  

Fig. 5.  Average recognition performance of SCOD models based on WSS, IDPMC and VTS methods on set 

A of the Aurora 2 dataset over four noises. For the IDPMC and WSS methods, three component Gaussian 

GMMs are used for SCOD modeling (M=3). a) shows average performance of single noise state models. b) 

shows absolute performance improvement when multiple noise states are used. 

Table 1 shows detailed recognition accuracy of the experiment in the multiple 

noise states mode. As it can be seen, using multiple noise states improves 

recognition accuracy in all cases and more improvement is also achieved in the low 

level SNRs. Additionally while IDPMC based factorial models gain more from 
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using multiple state noise models, WSS based factorial models achieve the best 

results (see table 1). This is due to the fact that “stereo” data provides frame-level 

mapping between the clean speech noise signal and corrupted utterances. Hence a 

better implicit mapping of actual corrupted features to clean speech and noise signal 

features is provided. This is because the other methods establish this relationship 

using the approximated mismatch functions. 
 

Table 1 Detailed word recognition accuracy for set A of the Aurora 2 dataset; comparing performance of 

factorial model of speech processing based on multiple state noise models for different SCOD modeling 

methods (average is calculated over SNRs 20 to 0). 

 

For evaluating effectiveness of factorial models for different noises, detailed 

relative percentage of recognition accuracy improvement of the last experiment for 

different noises are provided in Table 2. In fact, values provided in this table are 

relative improvement of WSS method for SCOD modeling for four noises when we 

use multiple noise states over the case where only one noise state is used. Two 

observations from this table can be noted. First, we can see that the factorial models 

are more beneficial when the corruption is more severe; i.e. low SNR conditions 

and more disturbing noises. Second, since non-stationary noises require multiple 

noise states for source modeling (see section 4.2), factorial models are more 

effective against noises with more states. It is apparent that for the Babble noise 

with 8 states, improvement is substantial and for the Subway noise with 3 states, 

the lowest improvement is achieved. 

Table 2 Detailed percentage of word recognition relative accuracy improvement when multiple noise states are 

used (details for averaged improvement in Fig. 5.b for the WSS based SCOD models). 

 20 15 10 5 0 avg -5 

Subway -- 0.06 0.42 -- -- 0.10 -- 

Babble 0.18 0.47 0.52 2.85 5.85 1.97 11.63 

Car 0.03 0.33 0.69 0.69 1.22 0.59 1.27 

Exhibition -- 0.06 0.45 0.17 1.43 0.42 2.56 

Average 0.05 0.23 0.52 0.93 2.13 0.77 3.86 

Finally, by incorporating independent feature spaces for clean and noisy speech 

as the advantage of the proposed method, we repeat the last experiment. Here 

observation features are selected to be 21 log Mel-scale filterbank energies with 

their first order derivatives (42 coefficients). Noise models with multiple states are 

used as in the last experiment. In this experiment, clean and noisy speech features 

are remained to be MFCC0d26. Table 3 compares the result of this experiment and 

the best result achieved with WSS SCOD models (right column in Table 1). 

 
 

SNR level 20 15 10 5 0 avg -5 20 15 10 5 0 avg -5 20 15 10 5 0 avg -5

Subway 95.4 95.5 93.4 88.9 77.6 90.1 52.7 96.8 95.9 93.4 89.4 78.5 90.8 58.5 98.3 97.8 96.4 93.4 83.0 93.8 61.6

Babble 96.0 94.5 90.9 84.6 66.8 86.6 38.1 96.3 95.4 92.4 86.2 68.5 87.8 37.5 98.0 97.2 95.5 90.5 75.4 91.3 40.9

Car 96.4 95.9 94.4 90.8 77.0 90.9 36.4 96.6 96.1 94.7 91.1 80.9 91.9 53.3 97.8 97.7 96.9 94.5 86.2 94.6 58.9

Exhibition 96.1 95.9 94.7 89.4 75.7 90.3 46.3 97.2 96.3 94.5 88.8 76.7 90.7 53.6 98.3 97.7 96.5 91.1 81.0 92.9 58.2

Average 96.0 95.4 93.3 88.4 74.3 89.5 43.4 96.7 96.0 93.7 88.9 76.2 90.3 50.7 98.1 97.6 96.3 92.4 81.4 93.2 54.9

VTS based SCOD models IDPMC based SCOD models WSS based SCOD models
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Table 3 Comparing average word recognition accuracy over the four noises when the observation feature space 

is changed to LogMelFBd42. 

 20 15 10 5 0 avg -5 

LogMelFBd42 97.96 97.55 96.67 93.33 83.07 93.72 56.07 

MFCC0d26 98.09 97.62 96.32 92.38 81.39 93.16 54.88 

Table 3 shows that filterbank energies are more appropriate for speech 

recognition in low SNR conditions which can be explained as follows. When log of 

filterbank energies are used as features, usually some subbands are more affected 

by noise due to the fact that most of noises affect only some subbands. However, 

when DCT is used to obtain MFCC coefficients, it uses energies of all subbands 

(including those affected by noise) and distributes that information to all MFCC 

coefficients. Therefore all MFCC feature dimensions are affected by noise 

corruption. As a result, it is more appropriate to use MFCC features for source 

modeling and features like filterbank energies for the observation space. 

6. Conclusion 

In this paper, a new method based on weighted “stereo” samples for modeling state-

conditional observation distribution is proposed for use in factorial speech 

processing models. In fact, the idea behind this method is similar to single pass 

retraining technique presented in [8] for model compensation. We present this 

method in the context of factorial speech processing models with its support for 

non-stationary noises. At first, we saw that using ideal SCOD models improves 

system performance in model compensation scenarios. Moreover, it is shown that 

using multiple noise-states will increase recognition accuracy especially in low 

SNR conditions and for severe non-stationary noises. 

Due to the use of “stereo” data, the proposed method cannot be used directly in 

many real applications since this data is not always available in the training phase. 

But similar to the ideal compensated models in the single pass retrained systems, 

we are able to train ideal SCOD models to assess capabilities of other practical 

techniques. The purpose for presenting this method is to provide a way to 

investigate whether increasing the number of noise states in noise models is useful 

for non-stationary noises in order to improve the overall system performance or not. 

As a result, increasing system performance in our experiments encourages 

researchers for developing methods for use in factorial speech processing models 

capable of handling non-stationary noises. The proposed method is still applicable 

in noise specific environments where noise information is available in advance 

during the training phase and in such a setting it performs far better than multi-

condition trained systems. 
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Appendix A 

Extending the EM algorithm for modeling mixture of Gaussians based on 

weighted samples 
 

In the E-step of the EM algorithm for weighted particles, particle weights have no 

effect on the component responsibility equations. By considering particle weights 

as the replicating order of the particles (similar to (24)), we see that this replication 

has no effect on the component responsibilities to each particle. Therefore 

component responsibilities are calculated without considering particle weights by 

the old parameter set as in E-step of the standard EM algorithm for GMMs: 

 𝛾𝑙(𝑘) ∝ 𝜋𝑘
′ 𝒩(𝒚𝑙; 𝝁𝑘

′ , 𝚺𝑘
′ ) (33) 

where the normalization constant is ∑ 𝜋𝑘
′ 𝒩(𝒚𝑙; 𝝁𝑘

′ , 𝚺𝑘
′ )𝐾

𝑘=1 . 

For the M-step, the following optimization problem must be solved: 

 
𝜃𝑛𝑒𝑤 = argmax

𝜃
𝒬(𝜃, 𝜃′)

𝑠𝑡: ∑ 𝜋𝑘
𝐾
𝑘=1 = 1

 (34) 

Using the method of Lagrange multiplier for satisfying the constraint for 

component priors, we have the following objective function for optimization: 

 𝑔(𝝁, 𝚺, 𝝅) = ∑ 𝑤𝑙 ∑ 𝛾𝑙(𝑘)[ln 𝑝(𝒚𝑙; 𝝁𝑘 , 𝚺𝑘) + ln 𝜋𝑘]𝐾
𝑘=1

𝐿
𝑙=1 + 𝜆(∑ 𝜋𝑘

𝐾
𝑘=1 − 1) (35) 

Taking the derivative 𝑔 with respect to 𝝁𝑘 results in: 

 𝜕𝑔 𝜕𝝁𝑘⁄ = 2 ∑ 𝑤𝑙𝛾𝑙(𝑘)[𝚺𝑘
−1(𝒚𝑙 − 𝝁𝑘)]𝐿

𝑙=1  (36) 

Now (30) is easily obtained for updating 𝝁𝑘 by setting this derivative to zero. 

For estimating 𝚺𝑘, according to [6] the derivative takes the following form: 

 𝜕𝑔 𝜕𝚺𝑘⁄ = −
1

2
∑ 𝑤𝑙𝛾𝑙(𝑘)[𝚺𝑘

−1 − 𝚺𝑘
−1(𝒚𝑙 − 𝝁𝑘)(𝒚𝑙 − 𝝁𝑘)𝑇𝚺𝒌

−𝟏]𝐿
𝑙=1  (37) 

in which the 𝝁𝑘 is estimated by (30). Setting it to zero, we obtain: 

 ∑ 𝑤𝑙𝛾𝑙(𝑘)(𝒚𝑙 − 𝝁𝑘)(𝒚𝑙 − 𝝁𝑘)𝑇𝚺𝑘
−1𝐿

𝑙=1 = ∑ 𝑤𝑙𝛾𝑙(𝑘)𝐿
𝑙=1  (38) 

Then (31) is obtained for estimating 𝚺𝑘 in which when the number of samples 

are significant, there is no need for adjusting the estimator for bias. Finally for 𝜋𝑘 

we have: 

 𝜕𝑔 𝜕𝜋𝑘⁄ = ∑ (𝑤𝑙𝛾𝑙(𝑘)) 𝜋𝑘⁄𝐿
𝑙=1 + 𝜆 = 0 (39) 

by using the assumption ∑ 𝜋𝑘
𝐾
𝑘=1 = 1 and considering 𝛾𝑙(𝑘) as a valid conditional 

probability mass function, 𝜆 is calculated by: 

 𝜆 = − ∑ 𝑤𝑙
𝐿
𝑙=1  (40) 

Now we can eliminate 𝜆 from (39) by (40) which leads to (32) for updating 𝜋𝑘. 
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