Skip to main content
Log in

A Fast-Settling Three-Stage Amplifier Using Regular Miller Plus Reversed Indirect Compensation

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A novel frequency compensation technique, named Regular Miller plus Reversed Indirect Compensation (RMRIC), is presented in this paper for fast-settling three-stage amplifiers. The RMRIC topology includes, on the one hand, a Miller capacitor combined with one nulling resistor connected between the first stage and the third stage, and on the other hand, an indirect compensation capacitor in series with a resistor added between the first and the second stage, which improves remarkably the performance such as gain–bandwidth product (GBW) and sensitivity of the proposed amplifier. Detailed design considerations are carried out to demonstrate the stability of the compensation technique. Circuit simulation results show the amplifier driving a 2-pF load capacitance achieves a 9.25-GHz GBW dissipating only 16.5 mW with a 1.2 V supply voltage using a TSMC 65 nm CMOS technology, which shows a significant improvement in figure of merits. The implemented amplifier reaches a settling time of 3.35 ns with 0.006 % accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.A. Aamir, P. Harikumar, J.J. Wikner, Frequency compensation of high-speed, low-voltage CMOS multistage amplifiers, in International Symposium on Circuits and Systems, 2013, pp. 381–384

  2. K. Bult, Analog design in deep sub-micron CMOS, in European Solid-State Circuits Conference, 2000, pp. 126–132

  3. K. Bult, G.J.G.M. Geelen, A fast-settling CMOS op amp for SC circuits with 90-dB gain. IEEE J. Solid State Circuits 25(6), 1379–1384 (1991)

    Article  Google Scholar 

  4. R.G.H. Eschauzier, L.P.T. Kerklaan, J.H. Huijsing, A 100-MHz 100-dB operational amplifier with multipath nested Miller compensation structure. IEEE J. Solid State Circuits 27(12), 1709–1717 (1992)

    Article  Google Scholar 

  5. R.G.H. Eschauzier, R. Hogervorst, J.H. Huijsing, A programmable 1.5 V CMOS class-AB operational amplifier with hybrid nested Miller compensation for 120 dB gain and 6 MHz UGF. IEEE J. Solid State Circuits 29(12), 1497–1504 (1994)

    Article  Google Scholar 

  6. S. Golabi, M. Yavari, High-speed three-stage operational transconductance amplifiers for switched-capacitor circuits, in Iranian Conference on Electrical Engineering, 2014, pp. 413–417

  7. S. Golabi, M. Yavari, Design of CMOS three-stage amplifiers for fast-settling switched-capacitor circuits. Analog Integr. Circuits Signal Process. 80(2), 195–208 (2014)

    Article  Google Scholar 

  8. J.H. Huijsing, D. Linebarger, Low-voltage operational amplifier with rail-to-rail input and output ranges. IEEE J. Solid State Circuits 20(6), 1144–1150 (1986)

    Article  Google Scholar 

  9. S.H. Lewis, H.S. Fetterman, G.F. Gross et al., A 10-b 20-Msample/s analog-to-digital converter. IEEE J. Solid State Circuits 27(3), 351–358 (1992)

    Article  Google Scholar 

  10. R. Nguyen, B. Murmann, The design of fast-settling three-stage amplifiers using the open-loop damping factor as a design parameter. IEEE Trans. Circuits Syst. I Regul. Pap. 57(6), 1244–1254 (2010)

    Article  MathSciNet  Google Scholar 

  11. G. Palumbo, S. Pennisi, Design methodology and advances in nested-Miller compensation. IEEE Trans. Circuits Syst. I Regul. Pap. 49(7), 893–903 (2002)

    Article  Google Scholar 

  12. X. Peng, W. Sansen, Nested feed-forward Gm-stage and nulling resistor plus nested-Miller compensation for multistage amplifiers, in Custom Integrated Circuits Conference, 2002, pp. 329–332

  13. X. Peng, W. Sansen, AC boosting compensation scheme for low-power multistage amplifiers. IEEE J. Solid State Circuits 39(11), 2074–2079 (2004)

    Article  Google Scholar 

  14. X. Peng, W. Sansen, L. Hou et al., Impedance adapting compensation for low-power multistage amplifiers. IEEE J. Solid State Circuits 46(2), 445–451 (2011)

    Article  Google Scholar 

  15. X. Peng, W. Sansen, Transconductance with capacitances feedback compensation for multistage amplifiers. IEEE J. Solid State Circuits 40(7), 1514–1520 (2005)

    Article  Google Scholar 

  16. X. Qu, Z.-K. Zhou, B. Zhang, Embedded capacitor multiplier gain boosting compensation for large-capacitive-load three-stage amplifier with slew rate enhancement. Analog Integr. Circuits Signal Process. 79(3), 543–553 (2014)

    Article  Google Scholar 

  17. V. Saxena, R.J. Baker, Indirect compensation techniques for three-stage CMOS op-amps, in International Midwest Symposium on Circuits and Systems, 2009, pp. 9–12

  18. V. Saxena, R.J. Baker, Indirect compensation techniques for three-stage fully-differential op-amps, in International Midwest Symposium on Circuits and Systems, 2010, pp. 588–591

  19. V. Saxena, S. Balagopal, R.J. Baker, Systematic design of three-stage op-amps using split-length compensation, in International Midwest Symposium on Circuits and Systems, 2011, pp. 1–4

  20. V. Saxena, S. Balagopal, R.J. Baker, Indirect feedback compensation of CMOS op-amps, in Workshop on Microelectronics and Electron Devices, 2006, pp. 2–4

  21. S. Seth, B. Murmann, Settling time and noise optimization of a three-stage operational transconductance amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 60(5), 1168–1174 (2013)

    Article  MathSciNet  Google Scholar 

  22. B.D. Sahoo, B. Razavi, A 12-bit 200-MHz CMOS ADC. IEEE J. Solid State Circuits 44(4), 2366–2380 (2009)

    Article  Google Scholar 

  23. M. Taherzadeh-Sani, A. Hamoui, A 1-V process-insensitive current-scalable two-stage opamp with enhanced DC gain and settling behavior in 65-nm digital CMOS. IEEE J. Solid State Circuits 46(3), 660–668 (2011)

    Article  Google Scholar 

  24. F. You, S. Embabi, E. Sanchez-Sinencio, Multistage amplifier topologies with nested Gm-C compensation. IEEE J. Solid State Circuits 32(12), 2000–2011 (1997)

    Article  Google Scholar 

  25. W. Yan, R. Kolm, H. Zimmermann, Efficient four-stage frequency compensation for low-voltage amplifiers, in International Symposium on Circuits and Systems, 2008, pp. 2278–2281

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61234002, 61322405, 61574103 and 61574105)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangming Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Zhu, Z. & Yang, Y. A Fast-Settling Three-Stage Amplifier Using Regular Miller Plus Reversed Indirect Compensation. Circuits Syst Signal Process 36, 795–810 (2017). https://doi.org/10.1007/s00034-016-0314-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0314-7

Keywords

Navigation