Skip to main content
Log in

Digital Equalization for Cancellation of Noise-Like Interferences in Adaptive Spatial Filtering

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Adaptive equalizer is an indispensable component of many radar systems for the cancellation of interference which arises due to mismatches in radar channels. This paper presents a reformulated LMS algorithm-based pipelined architecture of adaptive transversal equalizer that uses CORDIC as a main processing element to update angles instead of filter coefficients. In this architecture, hardware complexity has been reduced to a larger extent by utilizing pipeline method throughout the architecture. The lacuna of real-time system remains in the speed at which multiplication can be executed. We have proposed a modified version of pipelined Booth multiplier which uses partial product reduction scheme using 4–2 adder to reduce the computational time significantly. The hardware realization of the design reveals that critical path delay, area utilization and power consumption are reasonably low and therefore proposed design can be suitably be accommodated in modern-day radar system. The efficacy of the proposed interference canceller has been justified with extensive MATLAB simulations as well as hardware synthesis result for mitigation of interference in multi-channel radar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Y.I. Abramovich, G.J. Frazer, B.A. Johnson, Noncausal adaptive spatial clutter mitigation in monostatic MIMO radar: fundamental limitations. IEEE J. Sel. Top. Signal Process. 4(1), 40–54 (2010). doi:10.1109/JSTSP.2009.2038966

    Article  Google Scholar 

  2. A. Banerjee, A.S. Dhar, S. Banerjee, FPGA realization of a CORDIC based FFT processor for biomedical signal processing. Microprocess. Microsyst. 25(3), 131–142 (2001). doi:10.1016/S0141-9331(01)00106-5

    Article  Google Scholar 

  3. M. Chakraborty, A.S. Dhar, S. Pervin, CORDIC realization of the transversal adaptive filter using a trigonometric LMS algorithm, in Proceedings of 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP’01, vol. 2, pp. 1225–1228 (2001). doi:10.1109/ICASSP.2001.941145

  4. A. De Maio, S. De Nicola, Y. Huang, S. Zhang, A. Farina, Adaptive detection and estimation in the presence of useful signal and interference mismatches. IEEE Trans. Signal Process. 57(2), 436–450 (2009). doi:10.1109/TSP.2008.2008249

    Article  MathSciNet  Google Scholar 

  5. S.C. Douglas, Q. Zhu, K.F. Smith, A pipelined LMS adaptive FIR filter architecture without adaptation delay. IEEE Trans. Signal Process. 46(3), 775–779 (1998). doi:10.1109/78.661345

    Article  Google Scholar 

  6. K. Dusan, Performance limit of finite wordlength FIR digital filters. IEEE Trans. Signal Process. 53(7), 2462–2469 (2005). doi:10.1109/TSP.2005.849191

    Article  MathSciNet  Google Scholar 

  7. A. Farina, Digital equalisation in adaptive spatial filtering for radar systems: a survey. Signal Process. 83(1), 11–29 (2003). doi:10.1016/S0165-1684(02)00389-4

    Article  MATH  Google Scholar 

  8. A. Farina, Antenna Based Signal Processing Techniques, for Radar Systems. Artech House Inc, Norwood. ISBN-13: 978–0890063965. ISBN-10: 0890063966 (1992)

  9. A. Farina, R. Sanzullo, L. Timmoneri, Performance limitations and remedies in adaptive spatial filtering with timing errors. Signal Process. 82(2), 195–204 (2002). doi:10.1016/S0165-1684(01)00176-1

    Article  MATH  Google Scholar 

  10. A. Farina, F.A. Studer, Adaptive implementation of optimum radar signal processor, in Proceedings of the International Conference on Radar, Paris, vol. 5, issue 3, pp. 93–102 (1984). doi:10.1049/pbra001e_ch1

  11. D. Galbi, A.K. Chan, Four-to-two adder cell for parallel multiplication. U.S. Patent No. 4901270. 13 Feb (1990)

  12. G.O. Glentis, Pipelined architectures for transform domain LMS adaptive filtering. J. Circuits Syst. Comput. 14(3), 553–580 (2005). doi:10.1142/S0218126605002519

    Article  Google Scholar 

  13. S. Haykin, Adaptive Filter Theory, 4th edn. (Pearson Education, New Delhi, 2008)

    MATH  Google Scholar 

  14. Y.H. Hu, CORDIC-based VLSI architectures for digital signal processing. IEEE Signal Process. Mag. 9(3), 16–35 (1992). doi:10.1109/79.143467

    Article  Google Scholar 

  15. Y.H. Hu, On the convergence of the CORDIC adaptive lattice filtering (CALF) algorithm. IEEE Trans. Signal Process. 46(7), 1861–1871 (1998). doi:10.1109/78.700954

    Article  Google Scholar 

  16. Y.H. Hu, The quantization effects of the CORDIC algorithm. IEEE Trans. Signal Process. 40(4), 834–844 (1992). doi:10.1109/78.127956

    Article  MATH  Google Scholar 

  17. S.R. Kuang, J.P. Wang, C.Y. Guo, Modified booth multipliers with a regular partial product array. IEEE Trans. Circuits Syst. II Express Briefs 56(5), 404–408 (2009). doi:10.1109/TCSII.2009.2019334

    Article  Google Scholar 

  18. K. Lauritzen, H. Krichene, S. Talisa, Hardware limitations of receiver channel-pair cancellation ratio. IEEE Trans. Aerosp. Electron. Syst. 48(1), 290–303 (2012). doi:10.1109/TAES.2012.6129636

    Article  Google Scholar 

  19. Y. Liu, L. Fan, T. Ma, A modified cordic fpga implementation for wave generation. Circuits Syst. Signal Process. 33(1), 321–329 (2014). doi:10.1007/s00034-013-9638-8

    Article  Google Scholar 

  20. K. Maharatna, A.S. Dhar, S. Banerjee, A VLSI array architecture for realization of DFT, DHT, DCT and DST. Signal Process. 81(9), 1813–1822 (2001). doi:10.1016/S0165-1684(01)00061-5

    Article  MATH  Google Scholar 

  21. A. Mandal, R. Mishra, Design and performance analysis of LMS algorithm based adaptive filter embedded with CFAR detector under non-homogeneous clutter scenarios. Int. J. Adapt. Control Signal Process. (2015). doi:10.1002/acs.2646

  22. A. Mandal, R. Mishra, Design of complex non-linear adaptive equalizer in mitigating severe intersymbol interferences. J. Signal Process Syst. 1–12 (2015). doi:10.1007/s11265-015-1047-8

  23. A. Mandal, R. Mishra, An adaptive clutter suppression technique for moving target detector in pulse Doppler radar. Radioengineering 23(1), 84–95 (2014)

    Google Scholar 

  24. P.K. Meher, S.Y. Park, CORDIC designs for fixed angle of rotation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(2), 217–228 (2013). doi:10.1109/TVLSI.2012.2187080

    Article  Google Scholar 

  25. P.K. Meher, S.Y. Park, Area-delay-power efficient fixed-point LMS adaptive filter with low adaptation delay. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(2), 362–371 (2014). doi:10.1109/TVLSI.2013.2239321

    Article  Google Scholar 

  26. P.K. Meher, S.Y. Park, Critical-path analysis and low-complexity implementation of the LMS adaptive algorithm. IEEE Trans. Circuits Syst. I Regul. Pap. 63(32), 778–788 (2014). doi:10.1109/TCSI.2013.2284173

    Article  Google Scholar 

  27. P.K. Meher, J. Valls, T.B. Juang, K. Sridharan, K. Maharatna, 50 years of CORDIC: algorithms, architectures, and applications. IEEE Tran. Circuits Syst. I Regul. Pap. 56(9), 1893–1907 (2009). doi:10.1109/TCSI.2009.2025803

    Article  MathSciNet  Google Scholar 

  28. R. Nath, Adaptive echo cancellation based on a multipath model of acoustic channel. Circuits Syst. Signal Process. 32(4), 1673–1698 (2013). doi:10.1007/s00034-012-9529-4

    Article  Google Scholar 

  29. S.Y. Park, N.I. Cho, Fixed-point error analysis of CORDIC processor based on the variance propagation formula. IEEE Trans. Circuits Syst. I 51(3), 573–584 (2004). doi:10.1109/TCSI.2003.820232

    Article  MathSciNet  Google Scholar 

  30. R.P. Rajput, M.N.S. Swamy, High speed modified booth encoder multiplier for signed and unsigned numbers, in IEEE 14th International Conference on Computer Modelling and Simulation (UKSim), pp. 649–654 (2012). doi:10.1109/UKSim.2012.99

  31. K.D. Rao, M.N.S. Swamy, Eugene I. Plotkin, A nonlinear adaptive filter for narrowband interference mitigation in spread spectrum systems. Signal Process. 85(3), 625–635 (2005). doi:10.1016/j.sigpro.2004.11.005

    Article  MATH  Google Scholar 

  32. L.M. Roytman, M.N.S. Swamy, Determination of quantization error in two-dimensional digital filters. Proc. IEEE 69(7), 832–834 (1981). doi:10.1109/PROC.1981.12078

    Article  Google Scholar 

  33. TSMC 90nm General-Purpose CMOS Standard Cell Libraries-tcbn90ghp. www.tsmc.com/

  34. L. Vachhani, K. Sridharan, P.K. Meher, Efficient CORDIC algorithms and architectures for low area and high throughput implementation. IEEE Trans. Circuits Syst. II Express Briefs 56(1), 61–65 (2009). doi:10.1109/TCSII.2008.2010169

    Article  Google Scholar 

  35. J.E. Volder, The CORDIC trigonometric computing technique. IRE Trans. Electron. Comput. EC–8(3), 330–334 (1959). doi:10.1109/TEC.1959.5222693

    Article  Google Scholar 

  36. C.S. Wallace, A suggestion for a fast multiplier. IEEE Trans. Electron. Comput. EC–13(1), 14–17 (1964). doi:10.1109/PGEC.1964.263830

    Article  MATH  Google Scholar 

  37. D. Wang, Improved active calibration algorithms in the presence of channel gain/phase uncertainties and sensor mutual coupling effects. Circuits Syst. Signal Process. 34(6), 1825–1868 (2014). doi:10.1007/s00034-014-9926-y

    Article  MathSciNet  MATH  Google Scholar 

  38. R.S. Waters, E.E. Swartzlander, A reduced complexity wallace multiplier reduction. IEEE Trans. Comput. 59(8), 1134–1137 (2010). doi:10.1109/TC.2010.103

    Article  MathSciNet  Google Scholar 

  39. A. Wu, C.K. Ng, K.C. Tang, Modified booth pipelined multiplication. Electron. Lett. 34(12), 1179–1180 (1998). doi:10.1049/el:19980884

    Article  Google Scholar 

  40. T. Yang, W.B. Mikhael, A general approach for image and co-channel interference suppression in diversity wireless receivers employing ICA. Circuits Syst. Signal Process. 23(4), 317–327 (2004). doi:10.1007/s00034-004-3100-6

    Article  MATH  Google Scholar 

  41. W.P. Zhu, M.O. Ahmad, M.N.S. Swamy, Weighted least-square design of FIR filters using a fast iterative matrix inversion algorithm. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(11), 1620–1628 (2002). doi:10.1109/TCSI.2002.804594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amritakar Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Mishra, R. Digital Equalization for Cancellation of Noise-Like Interferences in Adaptive Spatial Filtering. Circuits Syst Signal Process 36, 675–702 (2017). https://doi.org/10.1007/s00034-016-0324-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0324-5

Keywords

Navigation