Skip to main content
Log in

An Improved Absolute Stability Criterion for Time-Delay Lur’e Systems and its Frequency Domain Interpretation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with absolute stability analysis for time-delay Lur’e systems with both sector- and slope-restricted nonlinearities. A new delay-dependent stability criterion is given by using a Lur’e-Postnikov functional. The additional slope restrictions on the nonlinearities play important roles in improving the absolute stability conditions. Numerical examples are presented to demonstrate the effectiveness of the proposed criterion. Moreover, a frequency domain interpretation for the criterion is presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. P.A. Bilman, Lyapunov-Krasovskii functionals and frequency domain: delay-independent absolute stability criteria for delay systems. Int. J. Robust Nonlinear Control 11, 771–788 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Bilotta, P. Pantano, F. Stranges, A gallery of Chua attractors: part I. Int. J. Bifurc. Chaos 17, 1–60 (2007)

    Article  MATH  Google Scholar 

  3. R.E. Blodgett, R.E. King, Absolute stability of a class of nonlinear systems containing distributed elements. J. Frankl. Inst. 284, 153–160 (1967)

    Article  MATH  Google Scholar 

  4. S.P. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994)

    Book  MATH  Google Scholar 

  5. J.W. Cao, S.M. Zhong, Y.Y. Hu, Delay-dependent condition for absolute stability of Lurie control systems with multiple time delays and nonlinearities. J. Math. Anal. Appl. 338, 497–504 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. S.J. Choi, S.M. Lee, S.C. Won, J.H. Park, Improved delay-dependent stability criteria for uncertain Lur’e systems with sector and slope restricted nonlinearities and time-varying delays. Appl. Math. Comput. 208, 520–530 (2009)

    MathSciNet  MATH  Google Scholar 

  7. M.B.G. Cloosterman, N.V. De Wouw, W.P.M.H. Heemels, H. Nijmeijer, Stability of networked control systems with uncertain time-varying delays. IEEE Trans. Autom. Control 54, 1575–1580 (2009)

    Article  MathSciNet  Google Scholar 

  8. W.Y. Duan, C.X. Cai, Delay-range-dependent stability criteria for delayed discrete-time Lur’e system with sector-bounded nonlinearities. Nolinear Dyn. 78, 135–145 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Gazi, K.M. Passino, A class of attractions/repulsion functions for stable swarm aggregations. Int. J. Control 77, 1567–1579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. W.M. Haddad, V. Kapila, Absolute stability criteria for multiple slope-restricted monotonic nonlinearities. IEEE Trans. Autom. Control 40, 361–365 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Q.L. Han, Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica 41, 2171–2176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. He, M. Wu, J.H. She, G.P. Liu, Robust stability for delay Lur’e control systems with multiple nonlinearities. J. Comput. Appl. Math. 176, 371–380 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. T.S. Hu, B. Huang, Z.L. Lin, Absolute stability with a generalized sector condition. IEEE Trans. Autom. Control 49, 535–548 (2004)

    Article  MathSciNet  Google Scholar 

  14. H. Huang, G. Feng, J.D. Cao, Exponential synchronization of chaotic Lur’e systems with delayed feedback control. Nonlinear Dyn. 57, 441–453 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. D.H. Ji, D.W. Lee, J.H. Koo, S.C. Won, S.M. Lee, J.H. Park, Synchronization of neutral complex dynamical networks with coupling time-varying delays. Nonlinear Dyn. 65, 349–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Josselson, G.V.S. Raju, Absolute stability of control systems with many sector and slope-restricted nonlinearities. Int. J. Control 19, 609–614 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. H.K. Khalil, J.W. Grizzle, Nonlinear Systems (Prentice-Hall, Englewood Cliffs, 2002)

    Google Scholar 

  18. O.M. Kwon, J.W. Son, S.M. Lee, Constrained predictive synchronization of discrete-time chaotic Lur’e systems with time-varying delayed feedback control. Nonlinear Dyn. 72, 129–140 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. S.M. Lee, O.M. Kwon, J.H. Park, Delay-independent absolute stability for time-delay Lur’e systems with sector and slope restricted nonlinearities. Phys. Lett. A 372, 4010–4015 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. S.M. Lee, S.J. Choi, D.H. Ji, J.H. Park, S.C. Won, Synchronization for chaotic Lur’e systems with sector-restricted nonlinearities via delayed feedback control. Nonlinear Dyn. 59, 277–288 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. S.M. Lee, J.H. Park, Delay-dependent criteria for absolute stability of uncertain time-delayed Lur’e dynamical systems. J. Frankl. Inst. 347, 146–153 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. G.A. Leonov, D.V. Ponomarenko, V.B. Smirnova, Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications (World Scientific, Singapore, 1996)

    Book  MATH  Google Scholar 

  23. H.Y. Li, Y.B. Gao, P. Shi, H.K. Lam, Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control. (2015). doi:10.1109/TAC.2015.2503566

  24. H.Y. Li, Y.N. Pan, P. Shi, Y. Shi, Switched fuzzy output feedback control and its application to mass-spring-damping system. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2015.2505332

  25. H.Y. Li, J.H. Wang, P. Shi, Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2015.2513085

  26. H.Y. Li, C.W. Wu, S. Yin, H.K. Lam, Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. (2015). doi:10.1109/TFUZZ.2015.2505331

  27. C.G. Li, L.N. Chen, K. Aihara, Synchronization of coupled nonidentical genetic oscillators. Phys. Biol. 3, 37–44 (2006)

    Article  Google Scholar 

  28. H.Y. Li, H.J. Gao, P. Shi, X.D. Zhao, Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50, 1825–1834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. X.X. Liao, P. Yu, Absolute Stability of Nonlinear Control Systems (Springer, New York, 2008)

    Book  MATH  Google Scholar 

  30. X. Liu, J.J. Du, Q. Gao, Stability analysis of nonlinear systems with slope restricted nonlinearities. The Scientific World Journal 2014, 278305 (2014). doi:10.1155/2014/278305

  31. X. Liu, J.Z. Wang, Z.D. Duan, L. Huang, New absolute stability criteria for time-delay Lur’e systems with sector-bounded nonlinearity. Int. J. Robust Nonlinear Control 20, 659–672 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Y.J. Liu, S.M. Lee, O.M. Kwon, J.H. Park, Robust delay-dependent stability criteria for time-varying delayed Lur’e systems of neutral type. Circuits Syst. Signal Process. 34, 1481–1497 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Margaliot, C. Yfoulis, Absolute stability of third-order systems: a numerical algorithm. Automatica 42, 1705–1711 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. P.G. Park, Stability criteria of sector- and slope-restricted Lur’e systems. IEEE Trans. Autom. Control 47, 308–313 (2002)

    Article  MathSciNet  Google Scholar 

  35. J.B. Qiu, G. Feng, H.J. Gao, Static-output-feedback \(H_{\infty }\) control of continuous-time T-S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21, 245–261 (2013)

    Article  Google Scholar 

  36. J.B. Qiu, H. Tian, Q.G. Lu, H.J. Gao, Nonsynchronized robust filtering design for continuous-time T-S fuzzy affine dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Cybern. 43, 1755–1766 (2013)

    Article  Google Scholar 

  37. J.B. Qiu, Y.L. Wei, H.R. Karimi, New approach to delay-dependent \(H_{\infty }\) control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions. J. Frankl. Inst. 352, 189–215 (2015)

    Article  MATH  Google Scholar 

  38. J.B. Qiu, S.X. Ding, H.J. Gao, S. Yin, Fuzzy-model-based reliable static output feedback \(H_{\infty }\) control of nonlinear hyperbolic PDE systems. IEEE Trans. Fuzzy Syst. 24, 388–400 (2016)

    Article  Google Scholar 

  39. F. Qiu, Q.X. Zhang, Absolute stability analysis of Lurie control system with multiple delays: an integral-equality approach. Nonlinear Anal. Real World Appl. 12, 1475–1484 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Rantzer, On the Kalman-Yakubovich-Popov lemma. Syst. Control Lett. 28, 7–10 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. V. Singh, A stability inequality for nonlinear feedback systems with slope-restricted nonlinearity. IEEE Trans. Autom. Control 29, 743–744 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Wang, H.J. Gao, J.B. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. 27, 416–425 (2016)

    Article  MathSciNet  Google Scholar 

  43. V.A. Yakubovich, The method of matrix inequalities in the stability theory of nonlinear control systems II: absolute stability in a class of nonlinearities with a condition on the derivative. Autom. Remote Control 26, 577–590 (1965)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China (Grant Nos. 61473245, 61004050), by the Natural Science Foundation for Young Scientist of Hebei Province (Grant No. F2014203099) and by the Independent Research Program for Young Teachers of Yanshan University (Grant No. 13LGA006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Du, J. & Liu, X. An Improved Absolute Stability Criterion for Time-Delay Lur’e Systems and its Frequency Domain Interpretation. Circuits Syst Signal Process 36, 916–930 (2017). https://doi.org/10.1007/s00034-016-0338-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0338-z

Keywords

Navigation