Skip to main content
Log in

A Sparse Recovery Method for DOA Estimation Based on the Sample Covariance Vectors

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a computation-efficient method utilizing sparse recovery technique is proposed to address the problem of direction of arrival (DOA) estimation based on sample covariance matrix vectors. In the development of the new method, the DOA estimation problem is reformulated in a way that each column of the sample covariance matrix is reintroduced as pseudo-measurements. With this reformulation, multiple candidates of the DOA estimation are obtained by utilizing sparse recovery concept in which an explicit formula of the threshold parameter is provided. The optimal DOA estimation is then selected by employing the maximum likelihood estimation criterion from these multiple candidates. The proposed approach not only has higher resolution and ability of processing coherent sources without the need of decorrelation preprocessing, but also exhibits robust performance, especially in the case of low signal-to-noise ratio and/or small number of snapshots. Numerical studies confirm the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Anderson, Y. Amemiya, The asymptotic normal distribution of estimators in factor analysis under general conditions. Ann. Stat. 2, 759–771 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. S.F. Cotter, B.D. Rao, K. Engan, K.K. Delgado, Sparse solution to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53, 2477–2488 (2005)

    Article  MathSciNet  Google Scholar 

  4. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 4, 1280–1360 (2006)

    MathSciNet  MATH  Google Scholar 

  5. J.J. Fuchs, On the application of the global matched filter to DOA estimation with uniform circular arrays. IEEE Trans. Signal Process. 49, 702–709 (2001)

    Article  Google Scholar 

  6. N.R. Goodman, Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction). Ann. Math. Stat. 34, 152–177 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Gui, L. Xu, F. Adachi, RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing. EURASIP J. Adv. Signal Process. 1, 125–134 (2014)

    Article  Google Scholar 

  8. Z.-Q. He, Z.-P. Shi, L. Huang, Covariance sparsity-aware DOA estimation for nonuniform noise. Digit. Signal Proc. 28, 75–81 (2014)

    Article  Google Scholar 

  9. N. Hu, Z.F. Ye, D. Xu et al., A sparse recovery algorithm for DOA estimation using weighted subspace fitting. Signal Process. 92, 2566–2570 (2012)

    Article  Google Scholar 

  10. N. Hu, Z.F. Ye, X. Xu et al., DOA estimation for sparse array via sparse signal reconstruction. IEEE Trans. Aerosp. Electron. Syst. 49, 760–773 (2013)

    Article  Google Scholar 

  11. A. John Rice, Mathematical Statistics and Data Analysis, 2nd edn. (Duxbury Press, Berkeley, 1995)

    MATH  Google Scholar 

  12. G. Karabulut, T. Kurt, A. Yongacoglu, Estimation of direction of arrival by matching pursuit (EDAMP). EURASIP J. Wirel. Commun. Netw. 2, 197–205 (2005)

    MATH  Google Scholar 

  13. C.E. Kassis, J. Picheral, G. Fleury, C. Mokbel, Direction of arrival estimation using EM-ESPRIT with nonuniform array. J. Circuits Syst. Signal Process. 31, 1787–1807 (2012)

    Article  MathSciNet  Google Scholar 

  14. H. Krim, M. Viberg, Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13, 67–94 (1996)

    Article  Google Scholar 

  15. Z.M. Liu, Z.T. Huang, Y.Y. Zhou, Array signal processing via sparsity-inducing representation of the array covariance matrix. IEEE Trans. Aerosp. Electron. Syst. 49, 1710–1724 (2013)

    Article  Google Scholar 

  16. D. Malioutov, M. Cetin, A. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53, 3010–3022 (2005)

    Article  MathSciNet  Google Scholar 

  17. S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)

    Article  MATH  Google Scholar 

  18. B. Picinbono, Second-order complex random vectors and normal distributions. IEEE Trans. Signal Process. 44, 2637–2640 (1996)

    Article  Google Scholar 

  19. B.D. Rao, K.V. Hars, Performance analysis of root-MUSIC. IEEE Trans. Acoust. Speech Signal Process. 37, 1939–1949 (1989)

    Article  Google Scholar 

  20. R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational in variance techniques. IEEE Trans. Antennas Propag. 37, 984–995 (1989)

    Article  Google Scholar 

  21. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)

    Article  Google Scholar 

  22. F.C. Shane, Multiple snapshot matching pursuit for direction of arrival (DOA) estimation. in Proceedings of 15th European Signal Processing Conference (Poland, 2007), pp. 247–251

  23. P. Stoica, A. Nehorai, MUSIC, maximum likelihood and Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process. 37, 720–741 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Stoica, A. Nehorai, Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 38, 1783–1795 (1990)

    Article  MATH  Google Scholar 

  25. P. Stoica, P. Babu, J. Li, SPICE: A sparse covariance-based estimation method for array processing. IEEE Trans. Signal Process. 59, 629–638 (2011)

    Article  MathSciNet  Google Scholar 

  26. J. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. J.A. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50, 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. R.T. Williams, S. Prasad, A.K. Mahalanabis, L.H. Sibul, An improved spatial smoothing technique for bearing estimation in a multipath environment. IEEE Trans. Acoust. Speech Signal Process. 36, 425–432 (1988)

    Article  MATH  Google Scholar 

  29. X. Xu, X. Wei, Z.F. Ye, DOA estimation based on sparse signal recovery utilizing weighted \(l_1\)-norm penalty. IEEE Signal Process. Lett. 19, 155–158 (2012)

    Article  Google Scholar 

  30. J.H. Yin, T.Q. Chen, Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Trans. Signal Process. 59, 4489–4493 (2011)

    Article  MathSciNet  Google Scholar 

  31. J. Zheng, M. Kaveh, Sparse spatial spectral estimation: a covariance fitting algorithm, performance and regularization. IEEE Trans. Signal Process. 61, 2767–2777 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the national high technology research and development program(“863” Program) of China (2014AA01A705), the National Natural Science Foundation of China (61501072) and Chongqing research program of basic research and frontier technology (cstc2015jcyjA40040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorong Jing.

Appendices

Appendix 1: Derivation of \(E({{\mathbf{w}}_i})=\sigma _n^2{{\mathbf{I}}_M}(:,i)\) and \(E({{\mathbf{w}}_i}{\mathbf{w}}_i^{\mathrm{H}}) = \frac{1}{L}\sigma _n^2{\mathbf{R}}(i,i){{\mathbf{I}}_M} + \sigma _n^4{\mathbf{E}}_M^{(i,i)}\)

With the assumption that the entries in the noise vector \({\mathbf{n}}(t)\) are spatially uncorrelated, circularly symmetric complex Gaussian random process with zero mean and equal variance \(\sigma _n^2\), \({\mathbf{n}}(t)\) can be represented by [6, 18],

$$\begin{aligned} {\mathbf{n}}(t) = \frac{1}{{\sqrt{2} }}{{\varepsilon }}(t) + i \cdot \frac{1}{{\sqrt{2} }}\varsigma (t), \end{aligned}$$
(25)

where \({{\varepsilon }}(t)\) and \({{\varsigma }}(t)\) are real Gaussian distributed random vectors with zero mean and variance \(\sigma _n^2\mathbf I \). The expectation of \({\mathbf{w}}_i\) is calculated as

$$\begin{aligned} \begin{array}{l} E({{\mathbf{w}}_i})\\ \quad = E\left\{ {\frac{1}{L}\sum \limits _{t = 1}^L {{\mathbf{n}}(t){{[{{\tilde{x}}_i}(t) + {n_i}(t)]}^{\mathrm{*}}}} } \right\} \\ \quad = \frac{1}{L}\sum \limits _{t = 1}^L {E\left\{ {{\mathbf{n}}(t){{[{{\tilde{x}}_i}(t) + {n_i}(t)]}^{\mathrm{*}}}} \right\} } \end{array}. \end{aligned}$$
(26)

Since \(\frac{1}{L}\sum _{t = 1}^L {E\left\{ {{n_j}(t){{[{{\tilde{x}}_i}(t) + {n_i}(t)]}^{\mathrm{*}}}} \right\} } = \left\{ {\begin{array}{*{20}{c}} {0 \quad j \ne i}\\ {\sigma _n^2 \;j = i} \end{array}} \right. \), we have \(E({{\mathbf{w}}_i})=\sigma _n^2{{\mathbf{I}}_M}(:,i)\).

The correlation of \({\mathbf{w}}_i\) and \({{\mathbf{w}}_i}^{\mathrm{H}}\) is computed as

$$\begin{aligned} E({{\mathbf{w}}_i}{\mathbf{w}}_i^{\mathrm{H}})= & {} \frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {\sum \limits _{l = 1}^L {E\left\{ {{\mathbf{n}}(t){{[{{\tilde{x}}_i}(t) + {n_i}(t)]}^*}{{\mathbf{n}}^{\mathrm{H}}}(l)[{{\tilde{x}}_i}(l) + {n_i}(l)]} \right\} } } \nonumber \\= & {} \frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {\sum \limits _{l = 1}^{t - 1} {E\left\{ {{\mathbf{n}}(t){{[{{\tilde{x}}_i}(t) + {n_i}(t)]}^*}{{\mathbf{n}}^{\mathrm{H}}}(l)[{{\tilde{x}}_i}(l) + {n_i}(l)]} \right\} } } \nonumber \\&+ \frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {\sum \limits _{l = t + 1}^L {E\left\{ {{\mathbf{n}}(t){{[{{\tilde{x}}_i}(t) + {n_i}(t)]}^*}{{\mathbf{n}}^{\mathrm{H}}}(l)[{{\tilde{x}}_i}(l) + {n_i}(l)]} \right\} } } \nonumber \\&+ \frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {E\left\{ {{\mathbf{n}}(t){{[{{\tilde{x}}_i}(t) + {n_i}(t)]}^*}{{\mathbf{n}}^{\mathrm{H}}}(t)[{{\tilde{x}}_i}(t) + {n_i}(t)]} \right\} }. \end{aligned}$$
(27)

Utilizing the mutual independency of the snapshots, the sum of the first and the second terms in Eq. (27) can be expressed as

$$\begin{aligned}&\frac{1}{L}\sum \limits _{t = 1}^L {E[{\mathbf{n}}(t)\tilde{x}_i^*(t) + {\mathbf{n}}(t)n_i^*(t)]} \cdot \left\{ \frac{1}{L}\sum \limits _{l = 1}^{t - 1} {E[{{\mathbf{n}}^{\mathrm{H}}}(l)\tilde{x}_i^*(l) + {{\mathbf{n}}^{\mathrm{H}}}(l)n_i^*(l)]}\right. \nonumber \\&\quad \left. + \frac{1}{L}\sum \limits _{l = t + 1}^L {E[{{\mathbf{n}}^{\mathrm{H}}}(l)\tilde{x}_i^*(l) + {{\mathbf{n}}^{\mathrm{H}}}(l)n_i^*(l)]} \right\} \nonumber \\&\qquad = \sigma _n^2{{\mathbf{I}}_M}(:,i) \cdot \frac{{L - 1}}{L}\sigma _n^2{({{\mathbf{I}}_M}(:,i))^{\mathrm{H}}}\nonumber \\&\qquad = \frac{{L - 1}}{L}\sigma _n^4{\mathbf{E}}_M^{(i,i)}. \end{aligned}$$
(28)

And the third term in Eq. (27) can be further written as

$$\begin{aligned}&\frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {E\left\{ {{\mathbf{n}}(t){{[{{\tilde{x}}_i}(t) + {n_i}(t)]}^*}{{\mathbf{n}}^{\mathrm{H}}}(t)[{{\tilde{x}}_i}(t) + {n_i}(t)]} \right\} } \nonumber \\&\quad = \frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {E[{\mathbf{n}}(t)\tilde{x}_i^*(t){{\mathbf{n}}^{\mathrm{H}}}(t){{\tilde{x}}_i}(t) + {\mathbf{n}}(t)n_i^*(t){{\mathbf{n}}^{\mathrm{H}}}(t){n_i}(t)]} \nonumber \\&\quad = \frac{1}{L}{{{\tilde{\mathbf{R}}}}_s}(i,i) \cdot \sigma _n^2{{\mathbf{I}}_M} + \frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {E[{\mathbf{n}}(t)n_i^*(t){{\mathbf{n}}^{\mathrm{H}}}(t){n_i}(t)]}, \end{aligned}$$
(29)

where \({{\tilde{\mathbf{R}}}_{\mathbf{s}}} = \frac{1}{L}E[{\tilde{\mathbf{x}}}(t){{\tilde{\mathbf{x}}}^{\mathrm{H}}}(t)]\) and \({{\tilde{\mathbf{R}}}_s}(i,i)\) denotes the \({(i,i)^{th}}\) entry of \({{\tilde{\mathbf{R}}}_{\mathbf{s}}}\).

Since

$$\begin{aligned}&\frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {E\left[ {n_i}(t)n_i^*(t)n_i^*(t){n_i}(t)\right] } \\&\quad = \frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {E\left[ \frac{1}{2}{{{\varepsilon }}^2}(t) + \frac{1}{2}{{{\varsigma }}^2}(t)\right] } \cdot \left[ \frac{1}{2}{{{\varepsilon }}^2}(t) + \frac{1}{2}{{{\varsigma }}^2}(t)\right] \\&\quad = \frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {E\left[ \frac{1}{4}{{{\varepsilon }}^4}(t) + \frac{1}{4}{{{\varsigma }}^4}(t) + \frac{1}{2}{{{\varepsilon }}^2}(t){{{\varsigma }}^2}(t)\right] } \\&\quad = \frac{1}{L}\left( \frac{3}{4}\sigma _n^4 + \frac{3}{4}\sigma _n^4 + \frac{1}{2}\sigma _n^4\right) = \frac{2}{L}\sigma _n^4 \end{aligned}$$

and

$$\begin{aligned}&\frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {E[{n_j}(t)n_i^*(t){\mathbf{n}}(t){n_i}(t)]} = \left\{ {\begin{array}{*{20}{c}} {\frac{2}{L}\sigma _n^4{{\mathbf{I}}_M}(:,i)\quad j = i}\\ {\frac{1}{L}\sigma _n^4{{\mathbf{I}}_M}(:,j)\quad j \ne i} \end{array}} \right. , \end{aligned}$$

the second term in Eq. (29) can be simplified as

$$\begin{aligned} \frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {E[{\mathbf{n}}(t)n_i^*(t){{\mathbf{n}}^{\mathrm{H}}}(t){n_i}(t)]} = \frac{1}{L}\sigma _n^4{{\mathbf{I}}_M} + \frac{1}{L}\sigma _n^4E_M^{(i,i)}. \end{aligned}$$
(30)

Substituting Eq. (30) into Eq. (29), we have

$$\begin{aligned}&\frac{1}{{{L^2}}}\sum \limits _{t = 1}^L {E\left\{ {{\mathbf{n}}(t){{[{{\tilde{x}}_i}(t) + {n_i}(t)]}^*}{{\mathbf{n}}^{\mathrm{H}}}(t)[{{\tilde{x}}_i}(t) + {n_i}(t)]} \right\} } \nonumber \\&\quad = \frac{1}{L}{{{\tilde{\mathbf{R}}}}_s}(i,i) \cdot \sigma _n^2{{\mathbf{I}}_M} + \frac{1}{L}\sigma _n^4{{\mathbf{I}}_M} + \frac{1}{L}\sigma _n^4{\mathbf{E}}_M^{(i,i)}\nonumber \\&\quad =\frac{1}{L}{\mathbf{R}}(i,i) \cdot \sigma _n^2{{\mathbf{I}}_M} + \frac{1}{L}\sigma _n^4{\mathbf{E}}_M^{(i,i)}. \end{aligned}$$
(31)

Now combining Eqs. (28) and (31), we can calculate \(E({{\mathbf{w}}_i}{\mathbf{w}}_i^{\mathrm{H}})\) as

$$\begin{aligned}&E({{\mathbf{w}}_i}{\mathbf{w}}_i^{\mathrm{H}}) = \frac{{L - 1}}{L}\sigma _n^4{\mathbf{E}}_M^{(i,i)} + \frac{1}{L}{\mathbf{R}}(i,i) \cdot \sigma _n^2{{\mathbf{I}}_{M \times M}} + \frac{1}{L}\sigma _n^4{\mathbf{E}}_M^{(i,i)}\nonumber \\&\quad = \frac{1}{L}{\mathbf{R}}(i,i) \cdot \sigma _n^2{{\mathbf{I}}_M} + \sigma _n^4{\mathbf{E}}_M^{(i,i)}. \end{aligned}$$
(32)

Appendix 2: Proof of \({{\mathbf{w}}_i} \sim {\mathrm{AsN(}}\sigma _n^2{{\mathbf{I}}_M}(:,i),\frac{1}{L}\sigma _n^2{\mathbf{R}}(i,i){{\mathbf{I}}_M}{\mathrm{)}}\)

According to Eq. (11), let \({\varvec{\Gamma }}(t) = {\mathbf{n}}(t){[{\tilde{x}_i}(t) + {n_i}(t)]^{\mathrm{*}}}\), and with the assumptions made in Sect. 2, the time correlation matrix of \({\varvec{\Gamma }}(t)\) can be expressed as follows

$$\begin{aligned} {{\mathbf{C}}_{\varvec{\Gamma }}} = E\left\{ {\varvec{\Gamma }}(t){\varvec{\Gamma }}{(l)^{\mathrm{H}}}\right\} = {{\mathbf{0}}_{M \times M}}\quad for\;t \ne l, \end{aligned}$$
(33)

where \({{\mathbf{0}}_{M \times M}}\) denotes \(M \times M\) zero matrix. The Eq. (33) implies that the random vectors \({\varvec{\Gamma }}(t)\) for different t are mutually independent. Meanwhile, it can be readily deduced that the entries of \({\varvec{\Gamma }}(t)\) are independent with each other for any t, and the random vectors \({\varvec{\Gamma }}(t)\) for different t have same probability distribution.

Based on the analysis above, and according to the Lindeberg–Levy central limit theorem in [11], \({{\mathbf{w}}_i}=\frac{1}{L}\sum \limits _{t = 1}^L {{\varvec{\Gamma }}(t)} \) satisfies an independent asymptotic Gaussian distribution, i.e., the probability distribution of \({{\mathbf{w}}_i}\) asymptotically approaches the Gaussian distribution as L increases. With the previous results in “Appendix 1,” it can be easily concluded that \({{\mathbf{w}}_i} \sim {\mathrm{AsN(}}\sigma _n^2{{\mathbf{I}}_M}(:,i),\frac{1}{L}\sigma _n^2{\mathbf{R}}(i,i){{\mathbf{I}}_M}{\mathrm{)}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, X., Liu, X. & Liu, H. A Sparse Recovery Method for DOA Estimation Based on the Sample Covariance Vectors. Circuits Syst Signal Process 36, 1066–1084 (2017). https://doi.org/10.1007/s00034-016-0339-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0339-y

Keywords

Navigation