Skip to main content
Log in

A Novel Modeling Methodology for Memristive Systems Using Homotopy Perturbation Methods

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The physical conception of the memristor by the Hewlett-Packard Labs has opened the possibility of combining this new fundamental circuit element with traditional devices in order to carried out novel applications. An important step for incorporating the memristor into the computer-aided design tools is to find an expression that represents the behavior of the device. In this paper, a novel modeling methodology for memristive systems using homotopy perturbation methods is introduced. This methodology is capable of generating a semi-symbolical expression that represents the memristive behavior of the device. The new memristor model is characterized in order to determinate the impact of the variables on the memristive behavior and establishes the range of compliance using the principal fingerprints of the memristor. Besides, the novel memristor model is depicted by two cases of study. Finally, the advantages of the memristor model are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H. Abdalla and M. Pickett. Spice modeling of memristors. In IEEE International Symposium on Circuits and Systems (ISCAS), 2011, pp. 1832–1835 (2011)

  2. S. Adhikari, M. Sah, H. Kim, L. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I: Regular Papers 60(11), 3008–3021 (2013)

    Article  Google Scholar 

  3. D. Batas, H. Fiedler, A memristor spice implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255 (2011)

    Article  Google Scholar 

  4. R. Berdan, C. Lim, A. Khiat, C. Papavassiliou, T. Prodromakis, A memristor spice model accounting for volatile characteristics of practical reram. IEEE Electron Device Lett. 35(1), 135–137 (2014)

    Article  Google Scholar 

  5. D. Biolek, Z. Biolek, V. Biolkova, Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be ’self-crossing’. Electron. Lett. 47(25), 1385–1387 (2011)

    Article  Google Scholar 

  6. D. Biolek, Z. Biolek, V. Biolkova, and Z. Kolka. Some fingerprints of ideal memristors. In IEEE International Symposium on Circuits and Systems (ISCAS), 2013, pp. 201–204 (2013)

  7. Z. Biolek, D. Biolek, V. Biolkova, Spice model of memristor with nonlinear dopant drift. Radioengineering 18, 210–214 (2004)

    Google Scholar 

  8. Z. Biolek, D. Biolek, V. Biolkova, Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)

    Google Scholar 

  9. R. Burden, J. Faires, Numerical Analysis (Cengage Learning, Boston, MA, 2004)

    MATH  Google Scholar 

  10. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  11. L. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  12. L. O. Chua, P. Y. Lin. Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques. Prentice Hall Professional Technical Reference, 1975. ISBN:0131654152

  13. M. Di Ventra, Y. Pershin, L. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Article  Google Scholar 

  14. U. Filobello-Nino, Hpm applied to solve nonlinear circuits: a study case. Appl. Math. Sci. 6(87), 4331–4344 (2012)

    MathSciNet  MATH  Google Scholar 

  15. C. Hernández-Mejía, A. Sarmiento-Reyes, H. Vázquez-Leal. A family of memristive-transfer functions of negative-feedback nullor-based amplifiers. Circuits Syst. Signal Process. 1–17 (2015). ISSN 0278-081X. doi:10.1007/s00034-015-0013-9

  16. H. Ji-Huan, Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(34), 257–262 (1999)

    MathSciNet  Google Scholar 

  17. H. Ji-Huan, A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear Mech. 35(1), 37–43 (2000)

    Article  MathSciNet  Google Scholar 

  18. Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)

    Article  MATH  Google Scholar 

  19. H. Kim, M.P. Sah, S.P. Adhikari. Pinched hysteresis loops is the fingerprint of memristive devices. Mesoscale and Nanoscale Physics (2012). arXiv:1202.2437

  20. M. Mahvash and A. Parker. A memristor spice model for designing memristor circuits. In IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2010 53rd, pp. 989–992 (2010)

  21. Y. V. Pershin, M. Di Ventra. SPICE model of memristive devices with threshold. ArXiv e-prints (2012)

  22. Y.V. Pershin, S. La Fontaine, M. di Ventra, Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926 (2009)

    Article  Google Scholar 

  23. T. Prodromakis, B.P. Peh, C. Papavassiliou, C. Toumazou, A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Devices 58(9), 3099–3105 (2011)

    Article  Google Scholar 

  24. A. Rak, G. Cserey, Macromodeling of the memristor in spice. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 29(4), 632–636 (2010)

    Article  Google Scholar 

  25. S. Shin, L. Zheng, G. Weickhardt, S. Cho, S.-M. Kang, Compact circuit model and hardware emulation for floating memristor devices. IEEE Circuit. Syst. Mag. 13(2), 42–55 (2013)

    Article  Google Scholar 

  26. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  27. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, R.S. Williams, D.R. Stewart, Memristive switching mechanism for metal/oxide/metal nanodevices. Nature 3(7), 429–433 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Hernández-Mejía.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Mejía, C., Sarmiento-Reyes, A. & Vázquez-Leal, H. A Novel Modeling Methodology for Memristive Systems Using Homotopy Perturbation Methods. Circuits Syst Signal Process 36, 947–968 (2017). https://doi.org/10.1007/s00034-016-0346-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0346-z

Keywords

Navigation