Skip to main content
Log in

Linear Filtering for Wide Band Noise Driven Observation Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a linear filtering problem for the observation system driven by the sum of white and wide band noises and the signal system driven by white noise is considered. It is assumed that the signal noise is independent of the observation noises. Two filtering results are proved. The first result assumes that the observation white and wide band noises are correlated and present a complete set of equations for the optimal filter. This result is non-invariant in the sense that it depends on the relaxing function, generating the wide band noise, that is not available in real applications. To remove the non-invariance, the problem is handled under additional condition on independence of observation noises, and the equations of the optimal filter are modified to this case. The obtained result is invariant in the sense that it is independent of the relaxing function but depends on the autocovariance function of the wide band noise that is available in real applications. This filtering result is applied to linear quadratic Gaussian control problem. Application of these filtering results to tracking satellites and digital signal processing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A.E. Bashirov, Stochastic maximum principle in the Pontryagin’s form for wide band noise driven systems. Int. J. Control. 88, 461–468 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. A.E. Bashirov, Wide band noises: invariant results. In: Proceedings of the World Congress on Engineering 2014, Vol. II, 2–4 July, London (2014)

  3. A.E. Bashirov, Filtering for linear systems with shifted noises. Int. J. Control. 78, 521–529 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. A.E. Bashirov, Partially Observable Linear Systems Under Dependent Noises, Systems & Control: Foundations & Applications (Birkhäuser, Basel, 2003)

    Book  MATH  Google Scholar 

  5. A.E. Bashirov, Control and filtering for wide band noise driven linear systems. AIAA J. Guid. Control Dyn. 16, 983–985 (1993)

    Article  MATH  Google Scholar 

  6. A.E. Bashirov, On linear filtering under dependent wide band noises. Stochastics 23, 413–437 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.E. Bashirov, H. Etikan, N. Şemi, Partial controllability of stochastic linear systems. Int. J. Control. 83, 2564–2572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. A.E. Bashirov, H. Etikan, N. Şemi, Filtering, smoothing and prediction for wide band noise driven systems. J. Franklin Inst. Eng. Appl. Math. B334, 667–683 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.E. Bashirov, L.V. Eppelbaum, L.R. Mishne, Improving Eötvös corrections by wide band noise Kalman filtering. Geophys. J. Int. 107, 193–197 (1992)

    Article  Google Scholar 

  10. A.E. Bashirov, N. Ghahramanlou, On partial \(S\)-controllability of semilinear partially observable systems. Int. J. Control. 88, 969–982 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. A.E. Bashirov, N. Mahmudov, N. Şemi, H. Etikan, Partial controllability concepts. Int. J. Control. 80, 1–7 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. A.E. Bashirov, Z. Mazhar, On asymptotical behavior of solution of Riccati equation arising in linear filtering with shifted noises, in Mathematical Methods in Engineering, ed. by K. Taş, J.A. Tenreiro Machado, D. Baleanu (Springer, Dordrecht, 2007), pp. 141–149

    Chapter  Google Scholar 

  13. A.E. Bashirov, Z. Mazhar, H. Etikan, S. Ertürk, Delay structure of wide band noises with application to filtering problems. Opt. Control Appl. Methods 34, 69–79 (2013)

    Article  MATH  Google Scholar 

  14. A.E. Bashirov, Z. Mazhar, H. Etikan, S. Ertürk, Boundary value problems arising in Kalman filtering. Boundary Value Problems (2008). doi:10.1155/2008/279410

  15. A.E. Bashirov, Z. Mazhar, S. Ertürk, Kalman type filter for systems with delay in observation noise. Appl. Comput. Math. Int. J. 12, 325–338 (2013)

    MathSciNet  MATH  Google Scholar 

  16. A.E. Bashirov, S. Uǧural, Representation of systems disturbed by wide band noises. Appl. Math. Lett. 15, 607–613 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. A.E. Bashirov, S. Uǧural, Analyzing wide band noise processes with application to control and filtering. IEEE Trans. Autom. Control. 47, 323–327 (2002)

  18. A.E. Bashirov, S. Uǧural, S. Ertürk, Wide band noise as a distributed delay of white noise. In: Proceedings of the World Congress on Engineering 2008, Vol. II, 2–4 July, London (2008)

  19. A. Bensoussan, Stochastic Control of Partially Observable Systems (Cambridge University Press, Cambridge, 1992)

    Book  MATH  Google Scholar 

  20. R.S. Bucy, P.D. Joseph, Filtering for Stochastic Processes with Application to Guidance (Wiley, New York, 1968)

    MATH  Google Scholar 

  21. R.F. Curtain, A.J. Pritchard, Infinite Dimensional Linear Systems Theory, Lecture Notes in Control and Information Sciences, vol. 8 (Springer, Berlin, 1978)

    Book  Google Scholar 

  22. W.M. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control (Springer, New York, 1975)

    Book  MATH  Google Scholar 

  23. J.L. Grassides, J.L. Junkins, Optimal Estimation of Dynamic Systems (Chapman and Hall/CRC, Boca Raton, 2004)

    Google Scholar 

  24. S. Han, J. Wang, Quantization and colored noises error modeling for inertial sensors for GPS/INS integration. IEEE Sensors J. 11, 1493–1503 (2011)

    Article  Google Scholar 

  25. H. Hu, Speech Signal Processing (Harbin Institute of Technology Press, Heilongjiang, 2000)

    Google Scholar 

  26. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME Ser. D. J. Basic Eng. 82, 35–45 (1960)

    Article  Google Scholar 

  27. R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. Trans. ASME Ser. D. J. Basic Eng. 83, 95–108 (1961)

    Article  MathSciNet  Google Scholar 

  28. H.J. Kusner, Modeling and approximations for stochastic systems with state-dependent singular controls and wide-band noise. SIAM J. Control Opt. 52, 311–338 (2014)

    Article  MathSciNet  Google Scholar 

  29. H.J. Kushner, W.J. Runggaldier, Nearly optimal state feedback controls for stochastic systems with wideband noise disturbances. SIAM J. Control Opt. 25, 298–315 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. H.J. Kushner, W.J. Runggaldier, Filtering and control for wide bandwidth noise driven systems. IEEE Trans. Autom. Control. 32, 123–133 (1987)

  31. H.J. Kushner, K.M. Ramachandran, Nearly optimal singular controls for sideband noise driven systems. SIAM J. Control Opt. 26, 569–591 (1988)

    Article  MATH  Google Scholar 

  32. R.S. Liptser, W.J. Runggaldier, M. Taksar, Diffusion approximation and optimal stochastic control. Theory Prob. Appl. 44, 669–698 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. E.J. Msechu, S.I. Roumeliotis, A. Ribeiro, G.B. Giannakis, Decentralized quantized Kalman filtering with scalable communication cost. IEEE Trans. Signal Process. 56, 3727–3741 (2008)

    Article  MathSciNet  Google Scholar 

  34. C. Peng, Q.-L. Han, On designing a novel self-triggered sampling scheme for networked control systems with data losses and communication delays. IEEE Trans. Ind. Electron. 63, 1239–1248 (2016)

    Article  Google Scholar 

  35. C. Peng, E. Tian, J. Zhang, D. Du, Decentralized event-triggering communication scheme for large-scale systems under network environments. Inf. Sci. (2015). doi:10.1016/j.ins.2015.06.036

  36. W. Wang, D. Liu, X. Wang, An improved wide band noise signal analysis method. Comput. Inf. Sci. 3, 76–80 (2010)

    Google Scholar 

  37. W.M. Wonham, On the separation theorem of stochastic control. SIAM J. Control. 6, 312–326 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.-J. Xiao, S. Cui, Z.-Q. Luo, A.J. Goldsmith, Power scheduling of universal decentralized estimation in sensor networks. IEEE Trans. Signal Process. 54, 413–422 (2006)

    Article  Google Scholar 

  39. J. Xu, J. Li, S. Xu, Analysis of quantization noise and state estimation with quantized measurements. J. Control Theory Appl. 9, 66–75 (2011)

    Article  MathSciNet  Google Scholar 

  40. K. You, L. Xie, S. Sun, W. Xiao, Multiple-level quantized innovation Kalman filter. Proceedings of the 17th World Congress IFAC, Seoul, Korea, July 6–11, pp. 1420–1425 (2008)

  41. J. Zhang, C. Peng, Event triggered \(H_\infty \) filtering for networked Takagi–Sugeno fuzzy systems with asynchronous constraints. IET Signal Process. 9, 403–411 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agamirza E. Bashirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashirov, A.E. Linear Filtering for Wide Band Noise Driven Observation Systems. Circuits Syst Signal Process 36, 1247–1263 (2017). https://doi.org/10.1007/s00034-016-0355-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0355-y

Keywords

Mathematics Subject Classification

Navigation