Skip to main content
Log in

Angle Estimation and Self-calibration Method for Bistatic MIMO Radar with Transmit and Receive Array Errors

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The mutual coupling, gain-phase error and sensor position error of the transmit and receive arrays would significantly degrade the performance of high-resolution direction of departure and direction of arrival estimation algorithms. By applying two well-calibrated instrumental sensors in both transmit and receive arrays, a novel angle estimation and self-calibration method, which considers the combined influences of the above three array errors, is proposed for bistatic MIMO radar. We show that the integrated array errors can be translated to angularly dependent gain-phase error. Then, a reduced dimensional method is used to estimate the angles and the angularly dependent gain-phase error coefficients. Based on the estimated angularly dependent gain-phase error coefficients, the nonlinear least squares optimization model for the three array errors are established and a quasi-Newton optimization method is applied to estimate the mutual coupling matrix, gain-phase error and sensors position errors of the transmit and receive arrays, respectively. Our simulation results corroborate our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.L. Bencheikh, Y.D. Wang, H.Y. He, Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar. Signal Process. 90, 2723–2730 (2010)

    Article  MATH  Google Scholar 

  2. B.L. Chen, The Theory and Method for of Optimization (Tsinghua University Press, Beijing, 2005)

    Google Scholar 

  3. D.F. Chen, B.X. Chen, G.D. Qin, Angle estimation using ESPRIT in MIMO radar. Electron. Lett. 44, 770–771 (2008)

    Article  Google Scholar 

  4. J.L. Chen, H. Gu, W.M. Su, Angle estimation using ESPRIT without pairing in MIMO radar. Electron. Lett. 44, 1422–1423 (2008)

    Article  Google Scholar 

  5. B. Friedlander, A.J. Weiss, Direction finding in the presence of mutual coupling. IEEE Trans. Antennas Propag. 39, 273–284 (1991)

    Article  Google Scholar 

  6. E. Fishler, A.M. Haimovich, R.S. Blum, L.J. Cimini, D. Chizhik, R.A. Valenzuela, MIMO radar: an idea whose time has come, in Proceedings of IEEE Radar Conference, (Philadelphia, PA, USA, 2004), pp. 71–78

  7. E. Fishler, A.M. Haimovich, R.S. Blum, L.J. Cimini, D. Chizhik, R.A. Valenzuela, Spatial diversity in radars-models and detection performance. IEEE Trans. Signal Process. 54, 823–838 (2006)

    Article  Google Scholar 

  8. A.A. Gorji, R. Tharmarasa, T. Kirubarajan, Optimal antenna allocation in MIMO radars with collocated antennas. IEEE Trans. Aerosp. Electron. Syst. 50, 542–558 (2014)

    Article  Google Scholar 

  9. Y.D. Guo, Y.S. Zhang, N.N. Tong, ESPRIT-like angle estimation for bistatic MIMO radar with gain and phase uncertainties. Electron. Lett. 47, 996–997 (2011)

    Article  Google Scholar 

  10. A.M. Haimovich, R.S. Blum, L.J. Cimini, MIMO radar with widely separated antennas. IEEE Signal Process. Mag. 25, 116–129 (2008)

    Article  Google Scholar 

  11. A. Hassanien, S.A. Vorobyov, Phased-MIMO radar: a tradeoff between phased-array and MIMO radars. IEEE Trans. Signal Process. 58, 3137–3151 (2010)

    Article  MathSciNet  Google Scholar 

  12. H.B. Li, Q. Wei, J. Jiang, H.L. Tian, Angle estimation and self-calibration for bistatic MIMO radar with mutual coupling of transmitting and receiving arrays, in Proceedings of 2014 IEEE Workshop on Electronics, Computer and Applications, (2014), pp. 354–357

  13. J. Li, P. Stoica, MIMO Radar Signal Processing (Wiley, New York, NY, 2009)

    Google Scholar 

  14. J.F. Li, X.F. Zhang, R.Z. Cao, Reduced-dimension MUSIC for angle and array gain-phase error estimation in bistatic MIMO radar. IEEE Commun. Lett. 17, 443–446 (2013)

    Article  Google Scholar 

  15. J.F. Li, X.F. Zhang, X. Gao, A joint scheme for angle and array gain-phase error estimation in bistatic MIMO radar. IEEE Geosci. Remote Sens. Lett. 10, 1478–1482 (2013)

    Article  Google Scholar 

  16. J. Li, M. Jin, Y. Zheng, Transmit and receive array gain-phase error estimation in bistatic MIMO radar. IEEE Antennas Wirel. Propag. Lett. 14, 32–35 (2015)

    Article  Google Scholar 

  17. X.L. Liu, G.S. Liao, Direction finding and mutual coupling estimation for bistatic MIMO radar. Signal Process. 92, 517–522 (2012)

    Article  Google Scholar 

  18. B.H. Wang, Y.L. Wang, H. Chen, Y. Guo, Array calibration of angularly dependent gain and phase uncertainty with carry-on instrumental sensors. Sci. China Ser. F Inf. 47, 777–792 (2004)

    Article  Google Scholar 

  19. T.Q. Xia, Joint diagonalization based DOD and DOA estimation for bistatic MIMO radar. Signal Process. 108, 159–166 (2015)

    Article  Google Scholar 

  20. X.F. Zhang, L.Y. Xu, L. Xu, Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimensional MUSIC. IEEE Commun. Lett. 14, 1161–1163 (2010)

    Article  Google Scholar 

  21. X.F. Zhang, D.Z. Xu, Angle estimation in bistatic MIMO radar using improved reduced dimension Capon algorithm. J. Syst. Eng. Electron. 24, 84–89 (2013)

    Article  Google Scholar 

  22. G.M. Zheng, B.X. Chen, M.Y. Yang, Unitary ESPRIT algorithm for bistatic MIMO radar. Electron. Lett. 48, 179–181 (2012)

    Article  Google Scholar 

  23. Z.D. Zheng, J.Y. Zhang, Y.B. Wu, Multi-target localization for bistatic MIMO radar in the presence of unknown mutual coupling. J. Syst. Eng. Electron. 23, 708–714 (2012)

    Article  Google Scholar 

  24. Z.D. Zheng, J. Zhang, J.Y. Zhang, Joint DOD and DOA estimation of bistatic MIMO radar in the presence of unknown mutual coupling. Signal Process. 92, 198–203 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 61501501, 61372166. The authors are grateful to anonymous reviewers for their valuable comments and suggestions which have greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiduo Guo.

Appendix

Appendix

First of all, let

$$\begin{aligned} J_r = \hbox {trace}\left( {\varvec{P}_{\varvec{\varTheta }}^\bot \varvec{g}_r \varvec{g}_r^{\mathrm{H}} } \right) \end{aligned}$$
(43)

and

$$\begin{aligned} \varvec{V}_r \left( {{\varvec{\zeta }}_r^{\left( i \right) } } \right) =\frac{\partial J_r }{\partial {\varvec{\zeta }}_r^{\left( i \right) } }=\hbox {trace}\left( {\frac{\partial \varvec{P}_{\varvec{\varTheta }}^\bot }{\partial {\varvec{\zeta }}_r^{\left( i \right) } }\varvec{g}_r \varvec{g}_r^{\mathrm{H}} } \right) \end{aligned}$$
(44)

Since the derivative of the projection matrix \(\varvec{P}_{\varvec{\varTheta }}^\bot \) with respect to \({\varvec{\zeta }}_r^{\left( k \right) } \) is [2]

$$\begin{aligned} \frac{\partial \varvec{P}_{\varvec{\varTheta }}^\bot }{\partial {\varvec{\zeta }}_r^{\left( k \right) } }=-\varvec{P}_{\varvec{\varTheta }}^\bot \frac{\partial {\varvec{\varTheta }}}{\partial {\varvec{\zeta }}_r^{\left( k \right) } }{\varvec{\varTheta }}^{\# }-\left( {\varvec{P}_{\varvec{\varTheta }}^\bot \frac{\partial {\varvec{\varTheta }}}{\partial {\varvec{\zeta }}_r^{\left( k \right) } }{\varvec{\varTheta }}^{\# }} \right) ^{\mathrm{H}} \end{aligned}$$
(45)

by substituting (36) into (35), we have

$$\begin{aligned} \varvec{V}_r \left( {{\varvec{\zeta }}_r^{\left( k \right) } } \right) =\frac{\partial J_r }{\partial {\varvec{\zeta }}_r^{\left( k \right) } }=-2 \hbox {Re}\left( {\varvec{g}_r^{\mathrm{H}} \varvec{P}_{\varvec{\varTheta }}^\bot \frac{\partial {\varvec{\varTheta }}}{\partial {\varvec{\zeta }}_r^{\left( k \right) } }{\varvec{\varTheta } \varvec{g}}_r } \right) \end{aligned}$$
(46)

For

(47)
(48)
(49)
(50)

where \(\delta _{m,n} = {\left\{ {{\begin{array}{ll} 1, &{} m=n \\ 0, &{} m\ne n \\ \end{array} }}\right. }.\)

By substituting (47)–(49) into (46), and after some manipulations, the gradient vector \(\varvec{V}_r \left( {{\varvec{\zeta }}_r^{\left( k \right) } } \right) \) of (24) can be solved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhang, Y., Tong, N. et al. Angle Estimation and Self-calibration Method for Bistatic MIMO Radar with Transmit and Receive Array Errors. Circuits Syst Signal Process 36, 1514–1534 (2017). https://doi.org/10.1007/s00034-016-0365-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0365-9

Keywords

Navigation