Skip to main content
Log in

Mono-component AM–FM Signal Decomposition Based on Discrete Second-Order Generalized Integrator Phase-Locked Loop

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A mono-component AM–FM signal decomposition method is proposed using discrete second-order generalized integrator and phase-locking scheme. A discrete second-order generalized integrator (SOGI) is employed in the algorithm as a quadrature signal generator for a center carrier frequency. The outputs from SOGI are in-phase and quadrature components of the AM–FM signal. These components are processed in the discrete phase-locked loop to estimate instantaneous frequency variation and instantaneous amplitude variation. The estimated instantaneous frequency variation is fed back to SOGI to adjust the center frequency. Proposed mono-component AM–FM demodulator is implemented in FPGA platform. The algorithm offers good acquisition time, accuracy, and operating range. Experimental investigations performed on the algorithm prove the efficacy and suitability of the algorithm for mono-component AM–FM demodulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Ciobotaru, R. Teodorescu, F. Blaabjerg, A new single phase PLL structure based on second order generalized integrator. In: Proceedings of \(37^{th}\) IEEE Power Electronics Specialists Conference, PESC’06, 1–6

  2. J.L. Flanagan, Parametric coding of speech spectra. J. Acoust. Soc. Am. 68, 412–419 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Francos, M. Porat, Analysis and synthesis of multicomponent signals using positive time–frequency distributions. IEEE Trans. Sig. Process. 47, 493–504 (1999)

    Article  Google Scholar 

  4. A. K. George, P. Sumathi, Mono-component AM–FM signal decomposition using SRF-PLL. In: Proceedings of IEEE International Conference on Communication and Signal Processing, ICCSP 792-796 (2014)

  5. E.B. George, M. Smith, Speech analysis/synthesis and modification using an analysis-by-synthesis/overlap-add sinusoidal model. IEEE Trans. Speech Audio Process. 5, 389–406 (1997)

    Article  Google Scholar 

  6. K. Hermus, W. Verhelst, P. Lemmerling, P. Wambacq, S. van Huffel, Perceptual audio modeling with exponentially damped sinusoids. Sig. Process. 85, 163–176 (2005)

    Article  MATH  Google Scholar 

  7. J.F. Kaiser, P. Maragos, T.F. Quatieri, Speech nonlinearities, modulations, and energy operators. IEEE ICASSP 1, 421–424 (1991)

    Google Scholar 

  8. P.J. Loughlin, B. Tacer, On the amplitude and frequency modulation decomposition of signals. J. Acoust. Soc. Am. 100, 1594–1601 (1996)

    Article  Google Scholar 

  9. J.S. Marques, L.B. Almeida, Frequency-varying sinusoidal modeling of speech. IEEE Trans. Acoust. Speech Sig. Process. 37, 763–765 (1989)

    Article  Google Scholar 

  10. K.V.S. Narayana, T.V. Sreenivas, AM–FM demodulation using zero crossing and local peaks. In: Proceedings on National Conference on Communication (2008)

  11. A. Potamianos, P. Maragos, A comparison of energy operator and the Hilbert transform approach to signal and speech demodulation. Sig. Process. 37, 95–120 (1994)

    Article  MATH  Google Scholar 

  12. T.F. Quatieri, T.E. Hanna, G.C. O’Leary, AM–FM separation using auditory-motivated filters. IEEE Trans. Speech Audio Process. 5, 465–480 (1997)

    Article  Google Scholar 

  13. T.F. Quatieri, R.J. McAulay, Speech analysis/synthesis based on a sinusoidal representation. IEEE Trans. Acoust. Speech Sig. Process. 34, 744–754 (1986)

    Article  Google Scholar 

  14. T.F. Quatieri, R.J. McAulay, Shape-invariant time-scale and pitch modifications of speech. IEEE Trans. Acoust. Speech Sig. Process. 40, 497–510 (1992)

    Article  Google Scholar 

  15. P. Rodriguez, A. Luna, I. Candela, R. Mujal, Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions. IEEE Trans. Ind. Electron. 58, 127–138 (2011)

    Article  Google Scholar 

  16. P. Stoica, R.L. Moses, B. Friedlander, T. Soderstrom, Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements. IEEE Trans. Acoust. Speech Sig. Process. 37, 378–392 (1989)

    Article  Google Scholar 

  17. D. Vakman, On the analytic signal, the Teager-Kaiser energy algorithm, and other methods for defining amplitude and frequency. IEEE Trans. Sig. Process. 44, 791–797 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aby K. George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, A.K., Sumathi, P. Mono-component AM–FM Signal Decomposition Based on Discrete Second-Order Generalized Integrator Phase-Locked Loop. Circuits Syst Signal Process 36, 1604–1620 (2017). https://doi.org/10.1007/s00034-016-0380-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0380-x

Keywords

Navigation