Skip to main content
Log in

Supplementary Schemes to Enhance the Performance of DWT-RDM-Based Blind Audio Watermarking

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper reports two schemes aimed at enhancing the performance of an algorithm based on rational dither modulation (RDM) for the blind watermarking of audio signals. The enhanced algorithm operates in a 4th-level approximation subband, which is obtained through discrete wavelet transform (DWT) decomposition. The first scheme involves the application of a two-tap FIR lowpass filter to mask the noise induced by watermarking, while the second scheme is meant to compensate for distortion introduced by vector modulation. These two schemes make it possible for the DWT-RDM algorithm to formulate audio watermarking with a payload capacity of 689 bits per second. The embedding process is organized as parametric vector operations, which allow the implantation of binary bits into DWT coefficient vectors using two variables, respectively, corresponding to lowpass filtering and distortion compensation. Experiments aimed at evaluating the quality of the resulting audio files indicated an improvement in average ODG score from \(-0.33\) to \(-0.26\). Furthermore, we observed a noticeable reduction in the bit error rates when conducting robustness tests against attacks, such as brumm addition, zero crossing, noise corruption, echo addition, MPEG-1 layer 3 compression, and time shifting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Bassia, I. Pitas, N. Nikolaidis, Robust audio watermarking in the time domain. IEEE Trans. Multimedia 3(2), 232–241 (2001)

    Article  Google Scholar 

  2. W. Bender, D. Gruhl, N. Morimoto, A. Lu, Techniques for data hiding. IBM Syst. J. 35(3.4), 313–336 (1996)

    Article  Google Scholar 

  3. V. Bhat K, I. Sengupta, A. Das, An adaptive audio watermarking based on the singular value decomposition in the wavelet domain. Digit. Signal Proc. 20(6), 1547–1558 (2010)

    Article  Google Scholar 

  4. V. Bhat K, I. Sengupta, A. Das, A new audio watermarking scheme based on singular value decomposition and quantization. Circuits Syst. Signal Process. 30(5), 915–927 (2011)

    Article  Google Scholar 

  5. B. Chen, G.W. Wornell, Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans. Inf. Theory 47(4), 1423–1443 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. S.-T. Chen, H.-N. Huang, C.-J. Chen, K.-K. Tseng, S.-Y. Tu, Adaptive audio watermarking via the optimization point of view on the wavelet-based entropy. Digit. Signal Proc. 23(3), 971–980 (2013)

    Article  MathSciNet  Google Scholar 

  7. N. Cvejic, T. Seppänen, Digital Audio Watermarking Techniques and Technologies: Applications and Benchmarks (Information Science Reference, Hershey, 2008)

    Book  Google Scholar 

  8. I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992)

    Book  MATH  Google Scholar 

  9. P.K. Dhar, T. Shimamura, Blind SVD-based audio watermarking using entropy and log-polar transformation. J. Inf. Secur. Appl. 20, 74–83 (2015)

    Google Scholar 

  10. J.J. Garcia-Hernandez, M. Nakano-Miyatake, H. Perez-Meana, Data hiding in audio signal using Rational Dither Modulation. IEICE Electron. Express 5(7), 217–222 (2008)

    Article  Google Scholar 

  11. M. Hasler, Y.L. Maistrenko, An introduction to the synchronization of chaotic systems: coupled skew tent maps. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 856–866 (1997)

    Article  MathSciNet  Google Scholar 

  12. X. He, Watermarking in Audio: Key Techniques and Technologies (Cambria Press, Youngstown, 2008)

    Google Scholar 

  13. H.-T. Hu, W.-H. Chen, A dual cepstrum-based watermarking scheme with self-synchronization. Sig. Process. 92(4), 1109–1116 (2012)

    Article  Google Scholar 

  14. H.-T. Hu, L.-Y. Hsu, Robust, transparent and high-capacity audio watermarking in DCT domain. Sig. Process. 109, 226–235 (2015)

    Article  Google Scholar 

  15. H.-T. Hu, L.-Y. Hsu, A DWT-based rational dither modulation scheme for effective blind audio watermarking. Circuits Syst. Signal Process. 35(2), 553–572 (2016)

    Article  Google Scholar 

  16. H.-T. Hu, L.-Y. Hsu, H.-H. Chou, Variable-dimensional vector modulation for perceptual-based DWT blind audio watermarking with adjustable payload capacity. Digit. Signal Proc. 31, 115–123 (2014)

    Article  Google Scholar 

  17. ITU Radiocommunication Sector Recommendation, BS.1387, Method for objective Measurements of Perceived Audio Quality (ITU-R, 1998)

  18. P. Kabal, An Examination and Interpretation of ITU-R BS.1387: Perceptual Evaluation of Audio Quality. TSP Lab Technical Report, Department Electrical and Computer Engineering, McGill University, Montreal (2002)

  19. N.K. Kalantari, S.M. Ahadi, A logarithmic quantization index modulation for perceptually better data hiding. IEEE Trans. Image Process. 19(6), 1504–1517 (2010)

    Article  MathSciNet  Google Scholar 

  20. S. Katzenbeisser, F.A.P. Petitcolas, in Information Hiding Techniques for Steganography and Digital Watermarking/Stefan Katzenbeisser, ed. by F.A.P. Petitcolas (Artech House, Boston, 2000)

    Google Scholar 

  21. C. Kiho, Y. Hwan Sik, K. Nam Soo, Robust data hiding for MCLT based acoustic data transmission. IEEE Signal Process. Lett. 17(7), 679–682 (2010)

    Article  Google Scholar 

  22. B. Lei, I.Y. Soon, F. Zhou, Z. Li, H. Lei, A robust audio watermarking scheme based on lifting wavelet transform and singular value decomposition. Signal Process. 92(9), 1985–2001 (2012)

    Article  Google Scholar 

  23. B.Y. Lei, I.Y. Soon, Z. Li, Blind and robust audio watermarking scheme based on SVD–DCT. Signal Process. 91(8), 1973–1984 (2011)

    Article  MATH  Google Scholar 

  24. W. Li, X. Xue, P. Lu, Localized audio watermarking technique robust against time-scale modification. IEEE Trans. Multimedia 8(1), 60–69 (2006)

    Article  Google Scholar 

  25. X. Li, H.H. Yu, in IEEE International Conference on Multimedia and Expo, New York, NY, USA. Transparent and robust audio data hiding in cepstrum domain (2000), pp. 397–400

  26. W.-N. Lie, L.-C. Chang, Robust and high-quality time-domain audio watermarking based on low-frequency amplitude modification. IEEE Trans. Multimedia 8(1), 46–59 (2006)

    Article  Google Scholar 

  27. S.C. Liu, S.D. Lin, BCH code-based robust audio watermarking in cepstrum domain. J. Inf. Sci. Eng. 22(3), 535–543 (2006)

    MathSciNet  Google Scholar 

  28. D. Megías, J. Serra-Ruiz, M. Fallahpour, Efficient self-synchronised blind audio watermarking system based on time domain and FFT amplitude modification. Sig. Process. 90(12), 3078–3092 (2010)

    Article  MATH  Google Scholar 

  29. P. Moulin, R. Koetter, Data-hiding codes. Proc. IEEE 93(12), 2083–2126 (2005)

    Article  Google Scholar 

  30. H. Peng, B. Li, X. Luo, J. Wang, Z. Zhang, A learning-based audio watermarking scheme using kernel Fisher discriminant analysis. Digit. Signal Proc. 23(1), 382–389 (2013)

    Article  MathSciNet  Google Scholar 

  31. R. Tachibana, S. Shimizu, S. Kobayashi, T. Nakamura, An audio watermarking method using a two-dimensional pseudo-random array. Sig. Process. 82(10), 1455–1469 (2002)

    Article  MATH  Google Scholar 

  32. S.V. Vaseghi, Multimedia Signal Processing: Theory and Applications in Speech, Music and Communications (Wiley, Chichester, 2007)

    Book  MATH  Google Scholar 

  33. V.S. Verma, R.K. Jha, A. Ojha, Digital watermark extraction using support vector machine with principal component analysis based feature reduction. J. Vis. Commun. Image Represent. 31, 75–85 (2015)

    Article  Google Scholar 

  34. V.S. Verma, R.K. Jha, A. Ojha, Significant region based robust watermarking scheme in lifting wavelet transform domain. Expert Syst. Appl. 42(21), 8184–8197 (2015)

    Article  Google Scholar 

  35. X.-Y. Wang, P.-P. Niu, H.-Y. Yang, A robust digital audio watermarking based on statistics characteristics. Pattern Recogn. 42(11), 3057–3064 (2009)

    Article  MATH  Google Scholar 

  36. X.-Y. Wang, H. Zhao, A novel synchronization invariant audio watermarking scheme based on DWT and DCT. IEEE Trans. Signal Process. 54(12), 4835–4840 (2006)

    Article  Google Scholar 

  37. X. Wang, P. Wang, P. Zhang, S. Xu, H. Yang, A norm-space, adaptive, and blind audio watermarking algorithm by discrete wavelet transform. Signal Process. 93(4), 913–922 (2013)

    Article  Google Scholar 

  38. X. Wang, P. Wang, P. Zhang, S. Xu, H. Yang, A blind audio watermarking algorithm by logarithmic quantization index modulation. Multimed. Tools Appl. 71(3), 1157–1177 (2014)

    Article  Google Scholar 

  39. X.Y. Wang, Q.L. Shi, S.M. Wang, H.Y. Yang, A blind robust digital watermarking using invariant exponent moments. AEU Int. J. Electron. Commun. 70(4), 416–426 (2016)

    Article  Google Scholar 

  40. S. Wu, J. Huang, D. Huang, Y.Q. Shi, Efficiently self-synchronized audio watermarking for assured audio data transmission. IEEE Trans. Broadcast. 51(1), 69–76 (2005)

    Article  Google Scholar 

  41. S. Xiang, Audio watermarking robust against D/A and A/D conversions. EURASIP J. Adv. Signal Process. 2011(1), 1–14 (2011)

    Article  Google Scholar 

  42. I.-K. Yeo, H.J. Kim, Modified patchwork algorithm: a novel audio watermarking scheme. IEEE Trans. Speech Audio Process. 11(4), 381–386 (2003)

    Article  Google Scholar 

  43. E. Zwicker, E. Terhardt, Analytical expressions for critical-band rate and critical bandwidth as a function of frequency. J. Acoust. Soc. Am. 68(5), 1523–1525 (1980)

    Article  Google Scholar 

Download references

Acknowledgments

This research work was supported by the Ministry of Science and Technology, Taiwan, ROC under Grant MOST 104-2221-E-197-023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwai-Tsu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, HT., Hsu, LY. Supplementary Schemes to Enhance the Performance of DWT-RDM-Based Blind Audio Watermarking. Circuits Syst Signal Process 36, 1890–1911 (2017). https://doi.org/10.1007/s00034-016-0383-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0383-7

Keywords

Navigation