Skip to main content
Log in

CDS Circuit with High-Performance VGA Functionality and Its Design Procedure

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In order to process charge-coupled-device (CCD) signals, a correlated double sampling (CDS) circuit is necessary for noise elimination. Furthermore, in order to amplify the CCD signals to proper amplitude, an extra variable-gain amplifier (VGA) circuit is also necessary for providing gain. In traditional works, for conciseness and efficiency, those separated CDS and VGA circuits are combined together into a single circuit. However, such a CDS circuit with embedded VGA can provide only several different gain values and 12-bit sampling resolution at most, which cannot meet the increasing demands from the users. Hence, for this reason, a new CDS circuit with embedded VGA has been proposed in this paper. This new CDS circuit has five advantages: high resolution of VGA-gain programming (512 different gain values), wide span of VGA-gain range (0–18 dB), good linearity of VGA-gain curve (linear-in-dB), fast sampling rate (80 MHz), and high sampling resolution (14-bit). Furthermore, this new CDS circuit can automatically convert “single-ended input signal” into “dual-ended output signal,” facilitating subsequent signal processing. Finally, this proposed circuit is fabricated in SMIC 0.18 \(\upmu \hbox {m}\) 3.3 V CMOS process. Under 80 MHz sampling rate, the measurement results show that the SNR is 72.96 dB; the SFDR is 80 dB; and the ENOB is 11.54-bit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Chae, J. Cheon, S. Lim, M. Kwon et al., A 2.1 M pixels, 120 frame/s CMOS image sensor with column-parallel \(\Delta \Sigma \) ADC architecture. IEEE J. Solid-State Circuits 46(1), 236–247 (2011). doi:10.1109/jssc.2010.2085910. (ISSN 0018-9200)

    Article  Google Scholar 

  2. M.-H. Choi, G.-C. Ahn, S.-H. Lee, 12b 50 MS/s 0.18 \(\upmu \)m CMOS ADC with highly linear input variable gain amplifier. Electron. Lett. 46(18), 1254–1256 (2010). doi:10.1049/el.2010.1834. (ISSN 0013-5194)

    Article  Google Scholar 

  3. H. Elwan et al., A differential-ramp based 65 dB-linear VGA technique in 65 nm CMOS. IEEE J. Solid-State Circuits 44(9), 2503–2514 (2009). doi:10.1109/JSSC.2009.2021446. (ISSN 0018-9200)

    Article  Google Scholar 

  4. R.L. Gower et al., Low power wide bandwidth programmable gain CDS amplifier/instrumentation amplifier. Google Patents Web. http://www.google.com/patents/US6573784 (2003). Accessed 9 Aug 2016

  5. M.L. Hafiane, R. Blachnitz, O. Manck, Z. Dibi et al., In-pixel implementation of an area-efficient analog-signal-processing for CMOS-3D image sensor. in Semiconductor Conference Dresden (SCD) (2011), pp. 1–4. doi:10.1109/SCD.2011.6068755

  6. S.-W. Han, E. Yoon, Area-efficient correlated double sampling scheme with single sampling capacitor for CMOS image sensors. Electron. Lett. 42(6), 335–337 (2006). doi:10.1049/el:20064189. ISSN 0013-5194

    Article  Google Scholar 

  7. S.M. Johnson et al., Correlated double sampling variable gain amplifier circuit for use in a digital camera. Google Patents Web. http://www.google.com/patents/US7289145 (2007). Accessed 9 Aug 2016

  8. M. Keen, An analog-to-digital processor for camcorders and digital still cameras. IEEE Trans. Consum. Electron. 44(3), 570–580 (1998). doi:10.1109/30.713165. (ISSN 0098-3063)

    Article  MathSciNet  Google Scholar 

  9. G. Köklü, Y. Leblebici, S. Carrara, A switched capacitor fully differential correlated double sampling circuit for CMOS image sensors, in 2011 5th International Symposium on Medical Information and Communication Technology (2011), pp.113–116. doi:10.1109/ISMICT.2011.5759808

  10. S. Lim, J. Cheon, Y. Chae, W. Jung et al., A 240-frames/s 2.1-M pixel CMOS image sensor with column-shared cyclic ADCs. IEEE J. Solid-State Circuits 46(9), 2073–2083 (2011). doi:10.1109/JSSC.2011.2144010. (ISSN 0018-9200)

    Article  Google Scholar 

  11. R. Liu, et al., CCD signal processing based on correlated double sampling, in 2011 5th International Conference on Bioinformatics and Biomedical Engineering, (iCBBE) (2011), pp.1–3. doi:10.1109/icbbe.2011.5780220

  12. C. Mangelsdorf, K. Nakamura, S. Ho, T. Brooks, K. Nishio, H. Matsumoto, A CMOS front-end for CCD cameras, in Solid-State Circuits Conference, Digest of Technical Papers. 42nd ISSCC., 1996 IEEE. International (1996), pp. 186–187. doi:10.1109/ISSCC.1996.488564

  13. S. Matsuo, T.J. Bales, M. Shoda, S. Osawa et al., 8.9-megapixel video image sensor with 14-b column-parallel SA-ADC. IEEE Trans. Electron Devices 56(11), 2380–2389 (2009). doi:10.1109/TED.2009.2030649. (ISSN 0018-9383)

    Article  Google Scholar 

  14. J.-H. Park, S. Aoyama, T. Watanabe, K. Isobe et al., A high-speed low-noise CMOS image sensor with 13-b column-parallel single-ended cyclic ADCs. IEEE Trans. Electron Devices 56(11), 2414–2422 (2009). doi:10.1109/TED.2009.2030635. (ISSN 0018-9383)

    Article  Google Scholar 

  15. D. Reynolds, S. Ho, An integrated 12 bit analog front end for CCD based image processing applications, in VLSI Circuits, 1996. Digest of Technical Papers., 1996 Symposium on (1996), pp.96–97. doi:10.1109/VLSIC.1996.507728

  16. L. Zhang, H. Lin, R. Du, A novel sampling method for CCD signal processing, in 2010 3rd International Congress on Image and Signal Processing (CISP) (2010), pp. 3985–3987. doi:10.1109/CISP.2010.5647829

  17. X. Zheng, F. Li, X. Wang, C. Zhang, A current-to-voltage integrator using area-efficient correlated double sampling technique, in 2012 IEEE International Symposium on Circuits and Systems (2012), pp. 2167–2170. doi:10.1109/ISCAS.2012.6271717

  18. Y. Zheng et al., A CMOS VGA with DC offset cancellation for direct-conversion receivers. IEEE Trans. Circuits Syst. 56(1), 103–113 (2009). doi:10.1109/TCSI.2008.2010592. (ISSN 1549-8328)

    Article  MathSciNet  Google Scholar 

  19. H. Zhuang et al., CDS circuit with 0 to 18 dB, 9-bit VGA functionality. Electron. Lett. 50(3), 158–159 (2014). doi:10.1049/el.2013.2133. (ISSN 0013-5194)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangming Zhu.

Additional information

This work was supported by the National Natural Science Foundation of China (61234002, 61322405, 61306044, 61376033), the National High-tech Program of China (2013AA014103).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, H., Zhu, Z., Wang, J. et al. CDS Circuit with High-Performance VGA Functionality and Its Design Procedure. Circuits Syst Signal Process 36, 1781–1805 (2017). https://doi.org/10.1007/s00034-016-0391-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0391-7

Keywords

Navigation