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Abstract—This paper proposes a novel multiplierless comb compensation filter, which 

has the absolute passband deviation less than 0.1dB in the wide passband. The 

compensator consists of a cascade of two simple filter sections, both operating at a low 

rate. The magnitude characteristics of the two component filters are synthesized as 

sinewave functions, in which the main design parameters correspond to the amplitudes of 

sinewave functions. A systematic procedure is followed to select synthesis parameters, 

which depend only on the number of cascaded comb filters. In particular, they are 

independent of the decimation factor. Comparisons with comb compensators from 

literature illustrate the benefits of the proposed design. 

Key words: Decimation; Aliasing; Comb filter; Passband droop; Compensator; 

Sinewave functions. 

1. INTRODUCTION 

Decimation is the process of decreasing sampling rate in a digital form which has 

applications in communications, audio signal processing, Sigma Delta Analog to Digital 

converters, among others [1]. However, this process introduces aliasing which must be 

eliminated by a decimation filter. The most simple decimation filter is the comb filter, 
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usually used at the first decimation stage. The system function of the comb is given as 

[2]: 
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where M is the decimation factor and K is the number of comb sections connected in 

series. 

The wide passband of a comb filter is defined by the edge frequency, given by: 
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SZ        .                                               (2) 

In order to achieve correct performance, the comb decimation filter should have a flat 

magnitude response in the signal bandwidth of interest. However, it is well known that 

the magnitude characteristic of comb filter, 
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exhibits a high passband droop, which increases with the number of the cascaded comb 

filters [1, 2]. 

In order to address this limitation, different compensators have been proposed to reduce 

the passband droop of the wide passband of comb-based decimation structures [3-12]. In 

the majority of the cases, proposed compensators require multipliers for their 

implementation [6], [7]. However, as comb structures can be synthesized as multiplierless 

filters, their associated compensators should be also implemented without multipliers. In 

addition, like CIC (Cascaded-Integrators-Combs) structure, the design of the 
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compensator should not be redesigned every time the values of design parameters M and 

K are modified.  

This paper addresses the above limitations and proposes a novel structure for comb 

compensator with the following main features: 

x The passband edge frequency is defined as π/(2M). 

x The compensator design is valid for a decimation factor M>10. 

x Multiplierless filter structure 

x Filter design is defined only by the comb design parameter, K. 

x Filter that has the passband absolute deviation less than 0.1dB. 

x Design approach has less complexity than previous approaches with the similar 

absolute passband deviation. 

The paper is organized as follows. Next Section describes the proposed compensator 

structure. Sections 3 and 4 present the methodology followed to properly select the main 

design parameters of the proposed compensator structure. Section 5 provides 

comparisons of the presented filter against previous approaches.  

 

2. DESCRIPTION OF PROPOSED FILTER 

2.1. Sinewave-based magnitude responses 

  The magnitude response of the compensator under study has to be approximately equal 

to the inverse of the magnitude response of a comb-based filter. The latter can be 

implemented as a squared sinewave-based magnitude response, given by [3]:  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

                          )2/(sin1)2/(sin1)( 2
2

2
22 MBMBeG Mj ZZZ � � ,                               (4) 

where B2 is the sinewave amplitude and M is the decimation factor. 

It can be shown from (4) that the absolute passband deviation depends on the design 

parameter, B2, which in turns depends on the comb-filter parameter, K. Indeed, as 

demonstrated in [3], the maximum absolute deviation, δ, lower than 0.4dB can be 

obtained for K=1, 2, …, 6.  

In order to achieve better approximation of the inverse of the comb magnitude 

response, a filter structure with the transfer function given in (4) can be connected in 

cascade with a stage having a fourth-order sine-based transfer function given by: 

                        )2/(sin1)2/(sin1)( 4
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where B1 is amplitude of the sine-based responses. 

   As a result, the proposed compensator structure has the following magnitude response:  
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   An example is provided in Fig.1(a), where the gain response of the inverse comb filter 

along with the gain responses from (4) and (5) are shown, with values B1=1, and B2=0.75. 

It can be observed that both the expressions in (4) and (5) approximate the inverse of the 

comb gain response reasonably well, with the expression in (5) offering a better 

approximation. 

   Fig.2(b) shows the gain responses of the inverse comb filter and  filter (6), using the 

same amplitudes B1=1, and B2=0.75 as in Fig.1(a). It can be noticed that the proposed 

compensator (6) matches well with the inverse of the comb magnitude characteristic.  
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   Thus, by combining sine-based magnitude responses (4) and (5), a better inverse comb 

magnitude response approximation can be achieved than using each one separately. 

Based on this observation, a proper selection of B1 and B2 could offer the best 

approximation for given values of K and M, i.e., the main design parameters of a comb-

based structure. 
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                  (a) Inverse comb magnitude response, G1(ejwM) with B1=1, G2(ejwM) with B2=0.75. 
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(b)Inverse comb magnitude response and  Gc(ejwM) with B1=1, and B2=0.75. 

 
Fig.1. Approximation of inverse comb magnitude characteristic with sine-based responses. 
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2.2. Proposed structures 

The transfer function of (4) can be expressed in the z-domain as [3]: 
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This function can be decimated by a factor of M to lower rate and written as [3]: 
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The transfer function given in (8) can be implemented by using the structure depicted in 

Fig. 2(a), which requires three adders and one multiplier, (coefficient B2). 

 Let us now turn our attention to the transfer function of the filter given in (5). By using 

the following well-known trigonometric relation: 

                                      8/]3)2cos(4)4[cos()(sin 4 �� DDD ,                                                  (9) 

it is straightforward to rewrite the magnitude response of (5) as: 
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By using the Euler’s formula, the expression in (10) can be rewritten as: 
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Substituting z=ejω in (11), yields: 

           > @ > @ MMMMM zBzzzBzG 2
1

334
1

4
1 132)(412)( ������ ����� .                             (12) 

At a low rate, after applying a decimation of M, the expression in (12) is given by: 
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The transfer function given in (13) can be implemented using the structure shown in 
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Fig. 2(b), which includes six adders and one multiplier, B1.  

The block diagram of the proposed compensated comb structure is shown in Fig. 2(c). 

Note that the proposed compensator - which consists of the cascade connection of the 

structures shown in Fig. 2(a) and Fig. 2(b) - is placed after the decimator, so that it 

operates at the lowest rate. 

 

 

(a) Structure for the filter G2(z). 

 

(b) Structure of the filter G1(z). 
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COMB M G1(z)∙ G2(z) 

  

 (c) Comb and proposed decimator. 

Fig.2. Proposed structures. 

 
3. PRELIMINARY DETERMINATION OF PARAMETERS 

 
In this section the parameters B1 and B2 are determined taking two conventionally 

chosen frequencies in the passband, ω1 and ω2. 

The compensated comb magnitude response can be derived from (3) and (6) as: 

                                            )()()()( 21
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where G1(ejωM) and G2(ejωM) are given by (4) and (5), respectively. 

The magnitude response of the compensated comb structure must be approximately flat 

in the passband, which can be formulated as: 

                                                    ;1)( |Zj
c eH   pZZ dd0 .                                                            (15) 

    In order to find the values of B1 and B2 that achieve the maximum compensation, the 

expression in (15) is evaluated at two frequencies ω1 and ω2, which are within the 

passband, so that |HC(ejω1)|≈1 and |HC(ejω2)|≈1. We denote the values B1 and B2 as B1s and 

B2s because their choice is related with the specified frequencies in the passband, ω1 and 

ω2. 

3.1. Determination of B2s  

   Without loss of generality, the frequency ω1 is chosen for convenience in such a way 

that the fourth power of the sine function in (5) is approximately zero, thus resulting in: 

                                                               1)( 1
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This way, evaluating (15) at ω1 and combing with (16), we have: 
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Using (4) and (1), and using the fact that the magnitude response of a comb filter is 

always positive in the passband, 0≤ ω ≤ ωP, the approximation in (18) can be expressed 

as: 
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Thus, B2s can be derived from (19): 

                                                         
)2/(sin

)2/sin(
)2/sin(1

1
2

1

1

2 M
M

M

B s Z
Z
Z

»
¼

º
«
¬

ª
��

| .                                                  (20) 

As an example, taking ω1=ωP /4, which satisfy (16), we have: 
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Note that the choice of B2s depends on M. Assuming a sufficiently large value of M, for 

instance M>10, the following approximation is valid: 
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and hence, B2s simplifies to:  
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which depends only on the value of K. 

3.2. Determination of B1s  

Proceeding in a similar way, and evaluating (15) at frequency ω2 it can be shown that: 
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The approximate expression for B1s can be derived from (24), giving: 
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Assuming that M>10 and ω2=ωP the expression in (25) can be simplified as: 
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Note that the parameters B1s and B2s do not depend on M, provided that M≥10, and 

depend only on the comb parameter K. As an illustration, Table 1 shows the values of B1s 

and B2s for different values of K, considering ω1 =ωP /4 and ω2 =ωP.  

Table 1: The values of B1s and B2s for ω1 =ωP /4 and ω2 =ωP 

K B1s B2s 

6 0.9510 1.0341 

5 0.7305 0.8590 

4 0.5350 0.6849 

3 0.3639 0.5121 

2 0.2173 0.3403 

1 0.0956 0.1696 
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In following example we illustrate that the same compensator parameters B1s and B2s 

can be used to compensate combs with equal K, and different values of M. 

Example 1: 

Let us consider two comb filters with K=4 and two values of M, 24 and 18, 

respectively. From Table 1 the compensator parameters for both combs are: B1s=0.535, 

B2s=0.6849. The gain responses along with the passband and first folding band zooms are 

shown in Fig.3, considering M=24 and M=18. Note that the proposed filter structure 

provides good compensation in both cases and that the alias rejection of the comb filter is 

not significantly degraded due to the compensator.  

 
(a)  M=24, K=4. 
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(b) M=18, K=4. 

 
Fig. 3. Illustrating the compensation of comb structures with different values of M and an equal value of K, 

using compensator with two multipliers. 
 

However, in spite of the mentioned benefits, the proposed methodology presents the 

following limitations:  

x The choice of frequencies ω1 and ω2 is arbitrary and hence, each new choice 

would result in different values of B1s and B2s. 

x The maximum absolute passband deviation of the compensated comb filter is not 

defined. 

x The compensator structure requires two multipliers. 

 
4. DETERMINATION OF PARAMETERS B1 AND B2 FOR MULTIPLIERLESS 

COMPENSATOR 

   In order to address the aforementioned limitations, our goal here is to obtain the 

multiplierless compensator which depends only on the comb parameter K, i.e. that the 

parameters B1 and B2 depend only on K. To this end, the proposed compensator structure 

is transformed into a multiplierless topology, by modifying B1s and B2s, so that these 
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coefficients can be realized by only using adders. 

   The values B1 are chosen first, in the most simple form, because the subfilter G1(z) is 

more complex than the subfilter G2(z). Next, the values of B2 are obtained in such way 

that the resulting absolute value of the passband deviation is less than the specified value 

|δd|.  

  With this in order, let us first consider the estimated values of B1s, presented in Table 1. 

These values are taken as a starting point to represent the filter parameters in the form of 

a power of two. This can be done by rounding the values of B1s, resulting in the values 

shown in Table 2 and denoted as B1. Note that coefficient B1 does not introduce any 

adders in the proposed compensator structures.  

   The modified values of B2s, denoted as B’2, are obtained using a similar procedure as 

the one proposed in [3]. Let us define the absolute value of maximum passband deviation 

as |δd|, so that the following condition is imposed 

                                    2/||)(log20 10 d
kj

c eH GZ �   [dB],                                       (27) 

where ωk are arbitrary frequencies in the passband, given by  
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  Note, that, since the rounding of coefficients introduces magnitude response deviation, a 

stronger condition in (28) has been used, taking |δd|/2. This way, substituting (28) into 

(27), N different values for B2s can be determined, denoted as B2sk, and given by:  

:  

> @
> @ Nk

NkNkB
Nk

NkNkB
B

K
d

sk ,...,1,
))4/((sin))4/((sin1

))4/(sin(
)4/(10))4/((sin1

22
1

40/||2
1

2  
�

»
¼

º
«
¬

ª
���

�
SS

S
SS G

,   (29) 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



where the values B1 are given in Table 2. 

The derivation of (29) is provided in Appendix in more detail. 

   Thus, for a given value of K, and the N values of B2sk obtained from (29), the values of 

B’2, are computed as: 

                                             NkBB skk
,...,1},{min 22

'   ,                                                               (30) 

which correspond to the minimum of all possible values of B2sk according to (30).  

   The expression in (30) can be easily implemented in Matlab scripts for given values of 

K, and B1, and considering |δd|=0.1. This value of |δd|=0.1 is evaluated by Matlab 

simulations and is chosen as a reasonable value, (by considering that the magnitude 

response of the proposed compensator structure can only approximate that of the 

corresponding inverse comb) to ensure that the maximum passband deviation is always 

less than 0.1dB for M>10 and K=1,…,6.  

   Based on these considerations, this maximum passband deviation of 0.1dB has been 

chosen to obtain the B'2 values shown in the third column of Table 2. 

Table 2: Values of B1 and B’2. 

K B1 B’2 

6 1 0.9858 

5 1 0.7188 

4 1/2 0.6905 

3 1/2 0.45 

2 1/4 0.3281 

1 0 0.2129 

 

Finally, the values of B’2, obtained from (30) are rounded, resulting in the coefficients 

denoted as B2, which can be expressed in the form of sums of power of two as shown in 
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Table 3. This table shows also the values of B1 and the number of adders required to 

implement each coefficient in the proposed compensator. 

Table 3: The values B1r, B2r, and the number of adders.for |δd|=0.1dB 

K B1 B2 Number of 
adders 

6 1 20-2-6 10 

5 1 20-2-2-2-5 11 

4 2-1 2-1+2-3+2-4 11 

3 2-1 2-1-2-4 10 

2 2-2 2-2+2-4 10 

1 0 2-2-2-5 4 

 
 
In general, the proposed compensator requires no more than 11 adders, providing the 

maximum absolute passband deviation lower than 0.1dB.  

Example 2: 

   Analogously, for the multiplier-based compensator, the proposed multiplierless 

compensator can also be used for different values of M, for the same value of parameter 

K. As an example, let us consider M=15, 31 and K=6. In these cases, B1=1 and B2=20-2-6 

are used, according to Table 3. The proposed compensator needs 10 adders. The overall 

gain responses along with the passband zooms are shown in Fig. 4, featuring desirable 

filter performance. 

 

5. COMPARISON WITH OTHER METHODS 

   In this section the proposed compensator structure implemented with the coefficients in 

Table 3, is compared with some proposed compensators proposed so far. The main 
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features obtained by the methods considered in this comparison are summarized in Table 

4 and discussed below.  
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(a) M=15, K=6, B1=1 and B2=20-2-6. 
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(b) M=31, K=6, B1=1 and B2=20-2-6. 

Fig. 4. Illustration of the proposed compensator for K=6 and two different values of M with coefficients 

from Table 3. 

 

5.1. Comparison with multiplierless methods 
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Let us start this comparative study by considering the multiplierless methods reported in 

[3] and [4]. The method proposed in this paper can be viewed as an extension of the sine-

squared magnitude response method reported in [3]. The method in [3] has the advantage 

of lower complexity e.g., requiring 3 adders for K=1, 2, 4 and 4 adders for K=3, and 5. 

Fig. 5 compares the overall gain responses for M=24 and K=4 obtained with the method 

proposed in this paper and that presented in [3].  

   The zoom in the passband confirms that the proposed method provides better 

compensation with the maximum absolute passband deviation of 0.065 dB in contrast 

with 0.34 dB, obtained by the compensator presented in [3].  
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Fig. 5. Comparison with the method reported in [3]. 

 

Moreover, there is no significant increase of the sidelobes in the proposed method, as 

can be observed in the zoom of the first folding band in Fig. 5.  
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Additionally, the advantages of both methods are that the design parameters are only 

defined by values of K, and thus it is not necessary to redesign compensation filter for 

new values of M.  

   The method presented in [4] uses the amplitude transformation of the cosine-squared 

magnitude characteristic. This method is compared in Fig. 6 with the one proposed in this 

work, considering M=25 and K=5. Note that the method reported in [4] has the advantage 

of lower complexity, requiring fewer adders (4 adders compared with 11 in the proposed 

method). However, as shown in the zoom in the passband, the proposed method has 

better compensation with an absolute value of the passband deviation of 0.065dB while 

in the method [4] this value is 0.4dB.  
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Fig. 6.  Comparison with the method reported in [4]. 

   The zoom in the first folding band indicates that the attenuations are equal in the 

folding bands, despite that in the proposed filter there are small increases of the sidelobes. 

Another interesting approach is presented in [5], which is based on a method based on 

the so-called interval analysis. In this method, the compensator coefficients are expressed 
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as the Sums of Powers of Two (SPT), obtained by global optimization technique, which 

is in turn based on the interval analysis, thus resulting in a multiplierless design [5]. The 

filters coefficients in the SPT forms are given in table in terms of the values of K and the 

specified number of the compensator coefficients. The main advantage of this method is 

that it provides the filter coefficients not only for different values of K but also for 

different compensator orders. The proposed compensator is compared with that of [5], 

with the same complexity, taking M=32 and K=5, as illustrated in Fig. 7. The 

compensator [5] has 5 coefficients and requires 11 adders, the same as in the proposed 

method. The absolute value of the maximum passband deviation in [5] is 0.125 dB in 

contrast to 0.067dB achieved by the proposed method. 

 

 Fig. 7. Comparison with the method reported in [5]. 

The attenuations in the folding bands are similar in both approaches. 

5.2. Comparison with methods requiring multipliers 
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   We now compare the proposed method with some existing compensators implemented 

using multipliers. For instance, the method reported in [7] is based on maximally flat 

error criterion and the compensator coefficients (up to 18 coefficients) are obtained by 

solving a system of linear equations. Fig. 8 illustrates the compensation achieved with 

this method considering M=30 and K=4. As a result of this maximally-flat design, the 

compensated comb has a flat-magnitude characteristic in the lower frequencies of the 

passband, resulting in slightly better characteristic in that sub-band, when compared to 

the proposed method. However, the proposed method has better characteristic in the 

upper part of the passband. Additionally, the absolute value of the maximum passband 

deviation in [7], is 0.128 dB, which is higher than the one obtained with the proposed 

compensator, 0.064dB.  
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Fig. 8. Comparison with the method presented in [7]. 

 

   The attenuations in the folding bands are equal for both methods. In addition, it is 

important to remark that the main disadvantage of method in [7], is that it requires 5 

multipliers and 10 adders. 
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   Finally, this study is concluded by comparing the proposed design method with the 

method reported in [9], which is based on the use of a minimum error function.  In this 

case, the compensator is defined by three coefficients, [-a/(1-2a), 1/(1-2a), -a/(1-2a)], 

where a is a parameter obtained by minimizing the error function, for given M and K. For 

each value of M and K, the compensator coefficients are obtained by minimizing error 

functions. 

   Fig. 9 compares the magnitude responses of the proposed methodology with the one 

reported in [9], considering M=17 and K=5, (the parameter a is 0.1805). Note that the 

proposed compensator provides better compensation. The absolute value of the maximum 

passband deviation in the method from [9] and the proposed method are respectively 

0.68dB and 0.064dB. Additionally, the method from [9] needs 2 multipliers and 2 adders. 

   The summary of the main features of proposed method and those of [3]-[7] is presented 

in Table. 4. 

On the basis of Table 4, and the above discussion, it can be concluded that, among the 

considered designs, the proposed compensator represents the best choice in terms of 

passband deviation and reduced hardware complexity, computed as the number of 

required multipliers and adders in each case. 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 4: Summary of the main features of proposed method and those of [3]-[7]. 

 
Compensa

tor 
Coefficie

nts given in 
Table 

Max flat 
design 

Max 
absolute 
deviation 

Number 
of 

multipliers 

Max 
number of 

adders 

Significan
tly affected 

folding 
bands 

This 
work 

Yes No < 0.1dB 0 11 No 

Method [3] Yes No < 0.3 dB 0 4 No 
Method [4] Yes No < 0.4 dB 0 4 No 
Method [5] Yes No < 0.2 dB 0 11 No 
Method [7] No Yes < 0.2 dB 5 10 No 
Method [9] No No < 0.7 dB 2 2 No 

 

6. CONCLUSIONS 

  A novel comb-based multiplierless compensator filter is introduced; this filter offers 

good compensation in the wide passband, while achieving reduced hardware complexity 

compared to previous approaches. It is demonstrated that the proposed structure has the 

absolute passband deviation less than 0.1dB. The proposed compensator filter is a 

cascade of two simple multiplierless filters and exhibits better features than the comb 

compensator filters previously proposed in the literature. As compensators in general, the 

proposed compensator filter slightly increases side lobes in the magnitude response of 

comb filter without penalizing significantly the alias rejection. 
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APPENDIX 
 
Here, the derivation of (29) is presented in detail. 
From (27), we have: 

                                                   40/10)( dkj
c eH GZ � .                                           (A.1) 

Using (14), we write: 

                                              )()()()( 21
kjMkjMkjkj

c eGeGeHeH ZZZZ  ,                             (A.2) 

 

where ωk are arbitrary frequencies in the passband, given by  

                                                         Nk
MN

k
k ,...1;

2
  

SZ .                                                      (A.3) 
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Placing (A.2) into (A.1), we get: 

                                               40/
21 10)()()( dkjMkjMkj eGeGeH GZZZ � .                                  (A.4) 

From (3), we write by noting that the comb magnitude response is positive in the 

passband: 
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We rewrite (A.5) as: 
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Placing (A.3) into (A.6) we get: 
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Similarly, using  (4) we write: 
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From (A.4), (A.7) and (A.8) we arrive at: 
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From here we have: 
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Using (5) we write: 
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where values B1 are given in Table 2. 

Finally, from (A.12) and (A.13) we arrive at: 
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