Skip to main content
Log in

SSP-Based UBI Algorithms for Uniform Linear Array

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The underdetermined blind identification (UBI) for uniform linear array (ULA) with complex-valued mixing matrix can be processed effectively by the algorithms based on single-source-point (SSP) detection. In this paper, we propose two novel SSP-based methods of UBI in the time–frequency (TF) domain for ULA. One method, called UBI based on linear TF transform (UBI-LT), presents a new SSP detection criterion based on short-time Fourier transform, which modifies IME-RSSP (proposed by Li) by exploiting the phase information of mixture. The other method proposes a new SSP detection criterion based on a cross-term suppression quadratic TF distribution called UBI based on modified quadratic TF distribution (UBI-MQD), which can be seen as an improved version of the SSP-based algorithm proposed by Su. After performing these SSP detection criteria, two methods employ the peak detection and a clustering algorithm to estimate the complex-valued mixing matrix. Two methods have their own advantages and can be chosen by robust systems or high-performance systems. Numerical simulation results show that (1) the proposed methods have better performance than the existing methods with the same means of TF analysis (linear TF transform or quadratic TF distribution), and (2) UBI-LT is more robust than UBI-MQD even on the condition that the source number is large and the signal-to-noise (SNR) is low, while UBI-MQD has higher performance than UBI-LT when the source number is small and the SNR is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Abrard, Y. Deville, A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Process. 85(7), 1389–1403 (2005)

    Article  MATH  Google Scholar 

  2. A. Aissa-El-Bey, N. Linh-Trung, K. Abed-Meraim, A. Belouchrani, Y. Grenier, Underdetermined blind separation of nondisjoint sources in the time-frequency domain. IEEE Trans. Signal Process. 55(3), 897–907 (2007)

    Article  MathSciNet  Google Scholar 

  3. G. Bao, Z. Ye, X. Xu et al., A compressed sensing approach to blind separation of speech mixture based on a Two-Layer sparsity model. IEEE Trans. Audio Speech Lang. Process. 21(5), 899–906 (2013)

    Article  Google Scholar 

  4. P. Bofill, M. Zibulevsky, Underdetermined blind source separation using sparse representations. Signal Process. 81(11), 2353–2362 (2001)

    Article  MATH  Google Scholar 

  5. Y. Cai, D. Liu, Multiuser detection using the Taguchi method for DS-CDMA systems. IEEE Trans. Wirel. Commun. 4(4), 1594–1607 (2005)

    Article  Google Scholar 

  6. P. Comon, C. Jutten et al., Handbook of Blind Source Separation: Independent Component Analysis and Applications (Academic press, New York, 2010)

    Google Scholar 

  7. T. Dong, Y. Lei, J. Yang, An algorithm for underdetermined mixing matrix estimation. Neurocomputing 104, 26–34 (2013)

    Article  Google Scholar 

  8. P. Georgiev, F. Theis, A. Cichocki, Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)

    Article  Google Scholar 

  9. A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001)

    Book  Google Scholar 

  10. M. Küdhne, R. Togneri, S. Nordholm, A new evidence model for missing data speech recognition with applications in reverberant multisource environments. IEEE Trans. Audio Speech Lang. Process. 19(2), 372–384 (2011)

    Article  Google Scholar 

  11. L.D. Lathauwer, J. Castaing, J.F. Cardoso, Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 55(6), 2965–2973 (2007)

    Article  MathSciNet  Google Scholar 

  12. L.D. Lathauwer, J. Castaing, Blind identification of underdetermined mixtures by simultaneous matrix diagonalization. IEEE Trans. Signal Process. 56(3), 1096–1105 (2008)

    Article  MathSciNet  Google Scholar 

  13. N. Linh-Trung, A. Belouchrani, K. Abed-Meraim et al., Separating more sources than sensors using time-frequency distributions. EURASIP J. Appl. Signal Process. 2005(17), 2828–2847 (2005)

    Article  MATH  Google Scholar 

  14. H. Li, Y. Shen, J. Wang et al., Estimation of the complex-valued mixing matrix by single-source-points detection with less sensors than sources. Trans. Emerg. Telecommun. Technol. 23(7), 137–147 (2012)

    Article  Google Scholar 

  15. H. Li, Y. Shen et al., Underdetermined blind separation using modified subspace-based algorithm in the time-frequency domain. Przegla̧d Elektrotechniczny 87(7), 280–283 (2011)

    Google Scholar 

  16. Y. Moudden, J. Bobin, Hyperspectral BSS using GMCA with spatio-spectral sparsity constraints. IEEE Trans. Image Process. 20(3), 872–879 (2011)

    Article  MathSciNet  Google Scholar 

  17. D. Peng, Y. Xiang, Underdetermined blind source separation based on relaxed sparsity condition of sources. IEEE Trans. Signal Process. 57(2), 809–814 (2009)

    Article  MathSciNet  Google Scholar 

  18. Q. Su, Y. Shen, W. Jian et al., Underdetermined blind identification for uniform linear array by a new time-frequency method. Circuits Syst. Signal Process. 36(1), 99–118 (2017)

  19. B. Tan, S. Xie, Underdetermined blind separation based on source signals number estimation. J. Electron. Inf. Technol. 30(4), 863–867 (2008). (in Chinese)

    Google Scholar 

  20. P. Tichavský, Z. Koldovský, Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources. IEEE Trans. Signal Process. 59(3), 1037–1047 (2011)

    Article  Google Scholar 

  21. Y. Xiang, D. Peng, Z. Yang, Blind source separation: dependent component analysis (Springer, Singapore, 2015)

  22. S. Xie, L. Yang, J. Yang et al., Time-frequency approach to underdetermined blind source separation. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 306–316 (2012)

    Article  MathSciNet  Google Scholar 

  23. O. Yilmaz, S. Richard, Blind separation of speech mixtures via time-frequency masking. IEEE Trans. Signal Process. 52(7), 1830–1847 (2004)

    Article  MathSciNet  Google Scholar 

  24. G.X. Zhou, Z.Y. Yang, S. Xie et al., Online blind source separation using incremental nonnegative matrix factorization with volume constraint. IEEE Trans. Neural Netw. 22(4), 550–560 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61172061 and 61201242 and the Natural Science Foundation of Jiang Su Province in China under Grant No. BK2012057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Su.

Appendices

Appendix 1: Proof of Theorem 1

Suppose that the TF point (tf) is the SSP where only \({s_i}(t)\) is active. Set \({\alpha _i} = - \pi \sin ({\theta _i})\). According to Eqs. (2) and (4), we have

$$\begin{aligned} \mathbf{x}(t,f)= & {} {\mathbf{a}_i}{s_i}(t,f)\nonumber \\= & {} \left( {\begin{array}{*{20}{c}} 1\\ {{e^{j{\alpha _i}}}}\\ \vdots \\ {{e^{j(M - 1){\alpha _i}}}} \end{array}} \right) {s_i}(t,f) \end{aligned}$$
(14)

Then, we can get

$$\begin{aligned} {x_m}(t,f) = {e^{j(m - 1){\alpha _i}}}{s_i}(t,f),\quad m = 1,2, \ldots ,M \end{aligned}$$
(15)

We take advantage of phase and amplitude information and obtain the following equations:

$$\begin{aligned} \left| {\frac{{{x_2}(t,f)}}{{{x_1}(t,f)}}} \right|= & {} \left| {\frac{{{x_3}(t,f)}}{{{x_1}(t,f)}}} \right| = \cdots = \left| {\frac{{{x_M}(t,f)}}{{{x_1}(t,f)}}} \right| = 1\end{aligned}$$
(16)
$$\begin{aligned} \frac{{{x_2}(t,f)}}{{{x_1}(t,f)}}= & {} \frac{{{x_3}(t,f)}}{{{x_2}(t,f)}} = \cdots = \frac{{{x_M}(t,f)}}{{{x_{M - 1}}(t,f)}} \end{aligned}$$
(17)

where Eq. (16) exploits the amplitude information of Eqs. (15) and (17) uses the phase information of Eq. (15). When \(M = 2\), SSPs should satisfy Eq. (16) only. If \(M > 2\), Eqs. (16) and (17) should be satisfied simultaneously at SSPs. These equations are the necessary conditions for SSPs. If they are strict enough for the false SSPs, they can be seen as a selection criterion for SSPs. In fact, they are rigorous for the false SSPs and we will prove it below.

We assume that \((t',f')\) is a false SSP. According to Eqs. (2) and (3), we can get

$$\begin{aligned} \mathbf{x}(t',f') = \left[ {\begin{array}{*{20}{c}} 1&{}1&{} \cdots &{}1\\ {{e^{j{\alpha _1}}}}&{}{{e^{j{\alpha _2}}}}&{} \cdots &{}{{e^{j{\alpha _N}}}}\\ \vdots &{} \vdots &{} \vdots &{} \vdots \\ {{e^{j(M - 1){\alpha _1}}}}&{}{{e^{j(M - 1){\alpha _2}}}}&{} \cdots &{}{{e^{j(M - 1){\alpha _N}}}} \end{array}} \right] \mathbf{s}(t',f') \end{aligned}$$
(18)

where \({\alpha _i} = - \pi \sin ({\theta _i})\;,i = 1,2, \ldots ,M\). Then, we have

$$\begin{aligned} {x_m}(t',f') = \sum \limits _{i = 1}^N {{e^{j(m - 1){\alpha _i}}}{s_i}(t',f')} \end{aligned}$$
(19)

If \((t',f')\) satisfies Eq. (16), we can obtain

$$\begin{aligned} \left| {\frac{{{x_m}(t',f')}}{{{x_1}(t',f')}}} \right| = \left| {\frac{{\sum _{i = 1}^N {{e^{j(m - 1){\alpha _i}}}{s_i}(t',f')} }}{{\sum _{i = 1}^N {{s_i}(t',f')} }}} \right| = 1,\quad m = 1,2, \ldots ,M \end{aligned}$$
(20)

If Eq. (20) is permanently satisfied for arbitrary \({s_i}(t',f')\), we will get \({\alpha _p} = {\alpha _q},\forall p,q \in \{ 1,\ldots ,N\} ,p \ne q\). Then the DOAs are equal. It is contradictory to the hypothesis \({\theta _i} \ne {\theta _j}(\forall i \ne j)\). So, Eq. (16) is strict for the false SSPs. However, Eq. (20) can be satisfied by some special signals at several false SSPs where \({s_i}(t',f')\) can make Eq. (20) work. In order to avoid that case, we exploit the phase information exhibited by Eq. (17). If the false SSP \((t',f')\) satisfies Eq. (17), we can get

$$\begin{aligned} \frac{{\sum _{i = 1}^N {{e^{j(m - 1){\alpha _i}}}{s_i}(t',f')} }}{{\sum _{i = 1}^N {{e^{j(m - 2){\alpha _i}}}{s_i}(t',f')} }} = \frac{{\sum _{i = 1}^N {{e^{jm{\alpha _i}}}{s_i}(t',f')} }}{{\sum _{i = 1}^N {{e^{j(m - 1){\alpha _i}}}{s_i}(t',f')} }},\quad m = 1,2, \ldots ,M \end{aligned}$$
(21)

Since \({s_i}(t',f')\) can be chosen arbitrarily, we can obtain the paradoxical conclusion \({\alpha _p} = {\alpha _q},\forall p,q \in \{ 1,\ldots ,N\} ,p \ne q\) as well. So, Eq. (17) is also rigorous for the false SSPs. The special signals are hard to satisfy Eqs. (16) and (17) simultaneously.

Thus, the combination of the two equations can be seen as an SSP detection criterion. In practical application, we should modify the two equations with introducing small positive thresholds \({\varepsilon _1}\) and \({\varepsilon _2}\). Then, this criterion can be shown by

$$\begin{aligned}&\sum \limits _{i = 2}^M {\left| {\left| {\frac{{{x_i}(t,f)}}{{{x_1}(t,f)}}} \right| - 1} \right| }< {\varepsilon _1}\\&\sum \limits _{m = 2}^{M - 1} {\left| {\frac{{{x_{m + 1}}(t,f)}}{{{x_m}(t,f)}} - \frac{{{x_m}(t,f)}}{{{x_{m - 1}}(t,f)}}} \right| } < {\varepsilon _2} \end{aligned}$$

When \(M = 2\), only first inequality needs to be satisfied. When \(M > 2\), two inequalities require to be satisfied simultaneously.

According to Eq. (15), we can obtain the DOA estimation at the SSP (tf) as follows:

$$\begin{aligned} \theta (t,f) = \arcsin \left( \frac{1}{{ - \pi (i - j)}}\mathrm{angle}\left( \frac{{{x_i}(t,f)}}{{{x_j}(t,f)}}\right) \right) \end{aligned}$$

where \(i \ne j\) and \(i,j \in \left\{ {1,\ldots ,M} \right\} \).

This completes the proof of Theorem 1. \(\square \)

Appendix 2: Proof of that When \(M=2\), the Detection Criteria in IME-RSSP And UBI-LT Are Equivalent

Suppose that the TF point (tf) is the SSP where only \({s_i}(t)\) is active. The detection criterion in IME-RSSP can be described by Eq. (5). It comes from a stricter condition below [14].

$$\begin{aligned} \left\| {{\mathbf{Y}^{ - 1}} \cdot \mathbf{Z}} \right\| = 1 \end{aligned}$$
(22)

where \(\mathbf{Y} = \left( {\begin{array}{*{20}{c}} {{\hbox {Re}} \left\{ {{x_2}(t,f)} \right\} }&{}{{\hbox {Im}} \left\{ {{x_2}(t,f)} \right\} }\\ {{\hbox {Im}} \left\{ {{x_2}(t,f)} \right\} }&{}{ - {\hbox {Re}} \left\{ {{x_2}(t,f)} \right\} } \end{array}} \right) \) and \(\mathbf{Z} = \left( {\begin{array}{*{20}{c}} {{\hbox {Re}} \left\{ {{x_1}(t,f)} \right\} }\\ {{\hbox {Im}} \left\{ {{x_1}(t,f)} \right\} } \end{array}} \right) \). Then we have

$$\begin{aligned} {\mathbf{Y}^{ - 1}} \cdot \mathbf{Z}= & {} {\left( {\begin{array}{*{20}{c}} {{\hbox {Re}} \left\{ {{x_2}(t,f)} \right\} }&{}{{\hbox {Im}} \left\{ {{x_2}(t,f)} \right\} }\\ {{\hbox {Im}} \left\{ {{x_2}(t,f)} \right\} }&{}{ - {\hbox {Re}} \left\{ {{x_2}(t,f)} \right\} } \end{array}} \right) ^{ - 1}}\left( {\begin{array}{*{20}{c}} {{\hbox {Re}} \left\{ {{x_1}(t,f)} \right\} }\\ {{\hbox {Im}} \left\{ {{x_1}(t,f)} \right\} } \end{array}} \right) \\= & {} \frac{1}{{{{\left| {{x_2}(t,f)} \right| }^2}}}\left( {\begin{array}{*{20}{c}} {{\hbox {Re}} \left\{ {{x_2}(t,f)} \right\} {\hbox {Re}} \left\{ {{x_1}(t,f)} \right\} + {\hbox {Im}} \left\{ {{x_2}(t,f)} \right\} {\hbox {Im}} \left\{ {{x_1}(t,f)} \right\} }\\ {{\hbox {Im}} \left\{ {{x_2}(t,f)} \right\} {\hbox {Re}} \left\{ {{x_1}(t,f)} \right\} - {\hbox {Re}} \left\{ {{x_2}(t,f)} \right\} {\hbox {Im}} \left\{ {{x_1}(t,f)} \right\} } \end{array}} \right) \end{aligned}$$

According to Eq. (22), we get

$$\begin{aligned}&\left\| {{\mathbf{Y}^{ - 1}} \cdot \mathbf{Z}} \right\| = \left\| {\frac{1}{{{{\left| {{x_2}(t,f)} \right| }^2}}}\left( {\begin{array}{*{20}{c}} {{\hbox {Re}} \left\{ {{x_2}(t,f)} \right\} {\hbox {Re}} \left\{ {{x_1}(t,f)} \right\} + {\hbox {Im}} \left\{ {{x_2}(t,f)} \right\} {\hbox {Im}} \left\{ {{x_1}(t,f)} \right\} }\\ {{\hbox {Im}} \left\{ {{x_2}(t,f)} \right\} {\hbox {Re}} \left\{ {{x_1}(t,f)} \right\} - {\hbox {Re}} \left\{ {{x_2}(t,f)} \right\} {\hbox {Im}} \left\{ {{x_1}(t,f)} \right\} } \end{array}} \right) } \right\| \\&\; = \frac{{\sqrt{{{\left( {\hbox {Re} \left\{ {{x_2}(t,f)} \right\} \hbox {Re} \left\{ {{x_1}(t,f)} \right\} + {\hbox {Im}} \left\{ {{x_2}(t,f)} \right\} {\hbox {Im}} \left\{ {{x_1}(t,f)} \right\} } \right) }^2} + {{\left( {{\hbox {Im}} \left\{ {{x_2}(t,f)} \right\} \hbox {Re} \left\{ {{x_1}(t,f)} \right\} - \hbox {Re} \left\{ {{x_2}(t,f)} \right\} \,\,\hbox {Im} \left\{ {{x_1}(t,f)} \right\} } \right) }^2}} }}{{{{\left| {{x_2}(t,f)} \right| }^2}}}\\&\; = 1 \end{aligned}$$

When \(M = 2\), the detection criterion in UBI-LT can be only described by Eq. (6). It comes from Eq. (16) and can be rewritten by

$$\begin{aligned}&\left| {\frac{{{x_1}(t,f)}}{{{x_2}(t,f)}}} \right| = \left| {\frac{{{\hbox {Re}} \{ {x_1}(t,f)\} + j{\hbox {Im}} \{ {x_1}(t,f)\} }}{{{\hbox {Re}} \{ {x_2}(t,f)\} + j{\hbox {Im}} \{ {x_2}(t,f)\} }}} \right| \\&\; = \left| {\frac{{\left( {{\hbox {Re}} \{ {x_1}(t,f)\} + j{\hbox {Im}} \{ {x_1}(t,f)\} } \right) \left( {{\hbox {Re}} \{ {x_2}(t,f)\} - j{\hbox {Im}} \{ {x_2}(t,f)\} } \right) }}{{\left( {{\hbox {Re}} \{ {x_2}(t,f)\} + j{\hbox {Im}} \{ {x_2}(t,f)\} } \right) \left( {{\hbox {Re}} \{ {x_2}(t,f)\} - j{\hbox {Im}} \{ {x_2}(t,f)\} } \right) }}} \right| \\&\; = \left| {\frac{{\left( {{\hbox {Re}} \{ {x_1}(t,f)\} {\hbox {Re}} \{ {x_2}(t,f)\} + {\hbox {Im}} \{ {x_1}(t,f)\} {\hbox {Im}} \{ {x_2}(t,f)\} } \right) - j\left( {{\hbox {Im}} \{ {x_2}(t,f)\} {\hbox {Re}} \{ {x_1}(t,f)\} - {\hbox {Re}} \{ {x_2}(t,f)\} {\hbox {Im}} \{ {x_1}(t,f)\} } \right) }}{{\left( {{\hbox {Re}} \{ {x_2}(t,f)\} + j{\hbox {Im}} \{ {x_2}(t,f)\} } \right) \left( {{\hbox {Re}} \{ {x_2}(t,f)\} - j{\hbox {Im}} \{{x_2}(t,f)\} } \right) }}} \right| \\&\; = \frac{{\sqrt{{{\left( {\hbox {Re} \{{x_1}(t,f)\} \,\hbox {Re} \{ {x_2}(t,f)\} + \hbox {Im} \{{x_1}(t,f)\} \,\hbox {Im} \{ {x_2}(t,f)\} } \right) }^2} + {{\left( {\hbox {Im} \{ {x_2}(t,f)\} \,\hbox {Re} \{ {x_1}(t,f)\} - \hbox {Re} \{ {x_2}(t,f)\}\, \hbox {Im} \{ {x_1}(t,f)\} } \right) }^2}} }}{{{{\left| {{x_2}(t,f)} \right| }^2}}}\\&\; = 1 \end{aligned}$$

From the derivation above, we can see that the two different detection criteria are equivalent when \(M = 2\).

This completes the proof.

Appendix 3: Proof of Theorem 2

Suppose that the TF point (tf) is the SSP where only \({s_i}(t)\) is active. Set \({\alpha _i} = - \pi \sin ({\theta _i})\). According to Eqs. (2) and (11), we can get

$$\begin{aligned} {\mathbf{{W}}_\mathbf{{x}}}(t,f)= & {} {\rho _{{s_i}{s_i}}}(t,f){\mathbf{{a}}_i}{} \mathbf{{a}}_i^\mathrm{{H}}\;\nonumber \\= & {} {\rho _{{s_i}{s_i}}}(t,f)\left( {\begin{array}{*{20}{c}} 1\\ {{e^{j{\alpha _i}}}}\\ \vdots \\ {{e^{j(M - 1){\alpha _i}}}} \end{array}} \right) \left( {\begin{array}{*{20}{c}} 1&{{e^{ - j{\alpha _i}}}}&\cdots&{{e^{ - j(M - 1){\alpha _i}}}} \end{array}} \right) \nonumber \\= & {} {\rho _{{s_i}{s_i}}}(t,f)\left( {\begin{array}{*{20}{c}} 1&{}{{e^{ - j{\alpha _i}}}}&{} \cdots &{}{{e^{ - j(M - 1){\alpha _i}}}}\\ {{e^{j{\alpha _i}}}}&{}1&{} \cdots &{}{{e^{ - j(M - 2){\alpha _i}}}}\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ {{e^{j(M - 1){\alpha _i}}}}&{}{{e^{j(M - 2){\alpha _i}}}}&{} \cdots &{}1 \end{array}} \right) \end{aligned}$$
(23)

According to the definition of the STFD matrices based on MWVD and STFT in [13], we have

$$\begin{aligned} \mathbf{{W}}_\mathbf{{x}}^\mathrm{MWV}(t,f)= & {} {\mathbf{{W}}_\mathbf{{x}}}(t,f) \odot {\left| {\mathbf{{W}}_\mathbf{{x}}^\mathrm{STFT}(t,f)} \right| ^2}\nonumber \\= & {} \left( {{\rho _{{s_i}{s_i}}}(t,f){\mathbf{{a}}_i}{} \mathbf{{a}}_i^\mathrm{{H}}\;} \right) \odot {\left| {\mathbf{{W}}_\mathbf{{x}}^\mathrm{STFT}(t,f)} \right| ^2}\nonumber \\= & {} {\rho _{{s_i}{s_i}}}(t,f)\left( {\begin{array}{*{20}{c}} {\rho _{{x_1}}^\mathrm{SPEC}(t,f)}&{}0&{} \cdots &{}0\\ 0&{}{\rho _{{x_2}}^\mathrm{SPEC}(t,f)}&{} \cdots &{}0\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ 0&{}0&{} \cdots &{}{\rho _{{x_M}}^\mathrm{SPEC}(t,f)} \end{array}} \right) \nonumber \\= & {} \left( {\begin{array}{*{20}{c}} {\rho _{{x_1}{x_1}}^\mathrm{MWV}(t,f)}&{}0&{} \cdots &{}0\\ 0&{}{\rho _{{x_2}{x_2}}^\mathrm{MWV}(t,f)}&{} \cdots &{}0\\ \vdots &{} \vdots &{} \cdots &{} \vdots \\ 0&{}0&{} \cdots &{}{\rho _{{x_M}{x_M}}^\mathrm{MWV}(t,f)} \end{array}} \right) \end{aligned}$$
(24)

Exploiting the diagonal elements, we get

$$\begin{aligned} \frac{{\rho _{{x_l}{x_l}}^\mathrm{MWV}(t,f)}}{{\rho _{{x_k}{x_k}}^\mathrm{MWV}(t,f)}} = \frac{{\rho _{{x_l}}^\mathrm{SPEC}(t,f)}}{{\rho _{{x_k}}^\mathrm{SPEC}(t,f)}}\;,\forall l \ne k \end{aligned}$$
(25)

This equation is a necessary condition for SSPs. If it is strict enough for the false SSPs, it can be seen as a selection criterion for SSPs. In fact, it is rigorous for the false SSPs and we will prove it below.

We assume that \((t',f')\) is a false SSP. Then we have

$$\begin{aligned} \mathbf{{W}}_\mathbf{{x}}^\mathrm{MWV}(t',f')= & {} {\mathbf{{W}}_\mathbf{{x}}}(t',f') \odot {\left| {\mathbf{{W}}_\mathbf{{x}}^\mathrm{STFT}(t',f')} \right| ^2}\\= & {} \left( {\begin{array}{*{20}{c}} {\rho _{{x_1}{x_1}}^\mathrm{MWV}(t',f')}&{}0&{} \cdots &{}0\\ 0&{}{\rho _{{x_2}{x_2}}^\mathrm{MWV}(t',f')}&{} \cdots &{}0\\ \vdots &{} \vdots &{} \cdots &{} \vdots \\ 0&{}0&{} \cdots &{}{\rho _{{x_M}{x_M}}^\mathrm{MWV}(t',f')} \end{array}} \right) \end{aligned}$$

where \(\rho _{{x_i}{x_i}}^\mathrm{MWV}(t',f') = \rho _{{x_i}}^\mathrm{SPEC}(t',f')\sum \nolimits _{q = 1}^N {\sum \nolimits _{p = 1}^N {{e^{j(i - 1)({\alpha _p} - {\alpha _q})}}{\rho _{{s_p}{s_q}}}(t',f')} } , i \in \{ 1, \ldots ,M\} \).

If \((t',f')\) satisfies Eq. (25), we can obtain

$$\begin{aligned} \frac{{\rho _{{x_l}{x_l}}^\mathrm{MWV}(t',f')}}{{\rho _{{x_k}{x_k}}^\mathrm{MWV}(t',f')}}= & {} \frac{{\rho _{{x_l}}^\mathrm{SPEC}(t',f')\sum _{q = 1}^N {\sum _{p = 1}^N {{e^{j(l - 1)({\alpha _p} - {\alpha _q})}}{\rho _{{s_p}{s_q}}}(t',f')} } }}{{\rho _k^\mathrm{SPEC}(t',f')\sum _{q = 1}^N {\sum _{p = 1}^N {{e^{j(k - 1)({\alpha _p} - {\alpha _q})}}{\rho _{{s_p}{s_q}}}(t',f')} } }}\\= & {} \frac{{\rho _{{x_l}}^\mathrm{SPEC}(t',f')}}{{\rho _{{x_k}}^\mathrm{SPEC}(t',f')}}\; \end{aligned}$$

where \(l \ne k,l,k \in \{ 1, \ldots ,M\} \). Then, we can get

$$\begin{aligned} \sum \limits _{q = 1}^N {\sum \limits _{p = 1}^N {{e^{j(l - 1)({\alpha _p} - {\alpha _q})}}{\rho _{{s_p}{s_q}}}(t',f')} } = \sum \limits _{q = 1}^N {\sum \limits _{p = 1}^N {{e^{j(k - 1)({\alpha _p} - {\alpha _q})}}{\rho _{{s_p}{s_q}}}(t',f')} } ,\quad \forall l \ne k \end{aligned}$$

Since \({\rho _{{s_p}{s_q}}}(t',f')\) can be chosen arbitrarily, we will get \({\alpha _p} = {\alpha _q},\forall p,q \in \{ 1, \ldots ,N\} ,p \ne q\). It is contradictory to the hypothesis \({\theta _i} \ne {\theta _j}(\forall i \ne j)\). So, this condition is rigorous for the false SSPs.

As a result, Eq. (25) can be seen as an SSP detection criterion. In practical application, we should modify the equation with introducing a small positive threshold \({\varepsilon _5}\). Then, this criterion can be shown by

$$\begin{aligned} \sum \limits _{\begin{array}{*{20}{c}} {i,j = 1},{i \ne j} \end{array}}^M {\left| {\frac{{\rho _{{x_i}{x_i}}^\mathrm{MWV}(t,f)}}{{\rho _{{x_j}{x_j}}^\mathrm{MWV}(t,f)}} - \frac{{\rho _{{x_i}}^\mathrm{SPEC}(t,f)}}{{\rho _{{x_j}}^\mathrm{SPEC}(t,f)}}} \right| } \le {\varepsilon _5} \end{aligned}$$

This completes the proof of Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Shen, Y., Wei, Y. et al. SSP-Based UBI Algorithms for Uniform Linear Array. Circuits Syst Signal Process 36, 4077–4096 (2017). https://doi.org/10.1007/s00034-017-0500-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0500-2

Keywords

Navigation