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Abstract Blind deconvolution is an ill-posed problem. To solve such a prob-
lem, prior information, such as, the sparseness of the source (i.e. input) signal
or channel impulse responses, is usually adopted. In speech deconvolution, the
source signal is not naturally sparse. However, the direct impulse and early
reflections of the impulse responses of an acoustic system can be considered as
sparse. In this paper, we exploit the channel sparsity and present an algorithm
for speech deconvolution, where the dynamic range of the convolutive speech
is also used as the prior information. In this algorithm, the estimation of the
impulse response and the source signal is achieved by alternating between two
steps, namely, the ¢; regularized least squares optimization and a proximal
operation. As demonstrated in our experiments, the proposed method pro-
vides superior performance for deconvolution of a sparse acoustic system, as
compared with two state-of-the-art methods.
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1 Introduction

Deconvolution aims to estimate unknown source signal € R from obser-
vation y € RM, assuming the system impulse response h € R’ is known,
and

y=xxh+w, (1)

where * denotes the convolution operation, w is the system noise, and M =
N+L—-1.

The deconvolution problem becomes blind, when both signal  and im-
pulse response h are unknown, and only the observation y is given. In this
case, both & and h need to be estimated. The blind deconvolution problem is
ill-posed, which is an underdetermined problem [5], as there are many possible
combinations of estimates (&, k) that satisfy model (1). This is similar to a
related problem, i.e. convolutive blind source separation [3,41,42,44], where
multiple sources need to be estimated from the observed mixtures [31] [32].
The applications of blind deconvolution include communications [20], image
deblurring [2,25,26,45] or recovery [6], spectrum restoration [27], speech mod-
eling [1], geophysics [22], and astronomy [8].

In order to reduce the possible solution space, additional prior knowledge
(such as the sparsity of the sources) can be exploited. Recently, sparse blind
deconvolution (SBD) has been widely studied, where the signal @ is assumed
to be sparse or approximately sparse. Usually, alternating minimization algo-
rithms are used to estimate signal  and impulse response h by minimizing
the cost function, which often comprises a data fidelity term and a regulariza-
tion term (penalty term). The regularization term is adopted to exploit the
prior information, such as the sparsity of the sources [36,37,40], as consid-
ered in [36] for seismic signals, in [10] [21] for spike signals, and in [22] for
images. In blind source separation, however, apart from the sparsity that is
often assumed for the underdetermined case [28] [43], statistical independence
between the sources is also widely exploited for estimating the sources and the
mixing channels [9,18,19,29, 30,34, 39].

In speech processing, considering a single-input and single-output (SISO)
acoustic system, the observation y of model (1), which can be seen as a rever-
berant speech signal, is a convolution of a source signal & and room impulse
response (RIR) h. Although speech sources tend to follow super-Gaussian
(Laplacian) distributions, they are not naturally sparse, unless they are con-
verted into a transform domain using a pre-defined or learned dictionary. The
RIR usually includes three parts: direct sound, early reflections, and late rever-
beration. In a room environment with a relatively low level of reverberation,
the late reverberation becomes negligible which renders h to be relatively
sparse. As a result, by considering the sparsity of the acoustic system, SBD
method can be used to estimate both the speech signal and RIR.

Exploiting only the sparsity prior, however, is insufficient to address the
ill-posed blind deconvolution problem, as there are no strong theoretical guar-
antees on the identifiablity of the sources and RIR unless some additional



Title Suppressed Due to Excessive Length 3

assumptions are enforced [11,12,25]. To this end, we consider the dynamic
range of the source signal as additional prior information to help reduce the
solution space. In practice, however, the source signal is unknown. To address
this issue, we use the dynamic range of the observation as an approximation,
which is then incorporated into an indicator function and used as a regular-
ization term in our optimization framework.

In this paper, we introduce a sparse blind deconvolution model, where not
only the sparsity of the acoustic system is considered, but also the dynamic
range of the reverberant speech is taken into account to reduce the possible
solution space for the estimation of h and . As a result, the proposed model
is the sum of a squared ¢5 norm data fidelity term and two regularization
terms: ¢ norm constraint term and an indicator function. The ¢; norm reg-
ularization term accounts for the sparsity of RIR and the indicator function
accounts for the dynamic range of the signal. An alternating minimization algo-
rithm is then proposed to solve this SBD problem in two steps: namely, sparse
RIR estimation and signal estimation. These two steps can be considered as
a combination of an ¢; regularized least squares problem with a proximal op-
eration. In our proposed iterative minimization algorithm, the ¢; regularized
least squares (I1.1s) algorithm [24] and the variable metric forward-backward
algorithm [13-15, 35, 36] are employed to estimate h and x, respectively.

The rest of the paper is organized as follows: Section II presents the model
formulation and details of our proposed algorithm for estimating the RIR and
the source signal. Section III shows the experiments and results. Section IV
concludes the paper and discusses the potential future work.

2 Proposed Sparse Blind Deconvolution Method
2.1 Proposed Model

In matrix form, (1) can be represented as
y=Xh+w=Hzx+w, (2)

where X € RM*L and H € RM*N are the convolution Toeplitz matrices
constructed from x and h, respectively. For example, the first row and first
column of X are [x1,0,---,0] and [21,--- ,2n,0,---,0]7, respectively.

By exploiting the prior information of both the source signal and RIR, we
propose the following blind deconvolution model for the sparse acoustic system

F(z,h) = f(x,h) + g(h) +r(z), 3)

where f(z,h) = ||z x h — y||3 is a squared ¢ norm data fidelity term which
accounts for model (1), g(h) = A||h||1 is an ¢; regularizer which exploits the
sparsity of h, and A is a regularization parameter. r(x) is the regularization
term, which considers additional prior information of the source signal x. Here,
r(x) is an indicator function, where the dynamic range of the observation y
is used to reduce the possible solution space for the estimation of the source
signal .
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2.2 Proposed Optimization Methods

We use an alternating minimization strategy to optimize the cost function (3),
where the sparse RIR h and source signal & are updated in an alternating
manner, by fixing one, and updating the other.

2.2.1 Sparse RIR h FEstimation

In this step, h is estimated by fixing the source signal x. In this case, the
minimization of the cost function (3) is reduced to the following form

R = argmin f(z*), h) + g(h)
h

. (4)
= aagin | Xk — g+ Al

where z(®) is the estimated source signal & at the k*" step, X (%) is the linear
convolution matrix constructed from x(®), and h(**1) is the estimated h at
the (k + 1)'" step.

The optimization of model (4) is a LASSO problem [38], which can be
solved by the algorithms, such as [1_ls [24], alternating direction method of
multipliers (ADMM) [7], proximal gradient method [33], and many others from
the CVX toolbox [17].

Here we adapt the interior-point method [1_ls as the solver to estimate
h, as discussed next. First, as the cost function (4) is not differentiable, it is
transformed to a convex quadratic problem with a linear inequality constraint,
as follows

L
R*+D = argmin|| X®h — y|2 + A Z U;
h = (5)

subject to —u; < h; <wu;i=1,---,L
where h € RY and u € R are the variables to be found. Then, a logarithmic

barrier function ®(h, ) is introduced for the bound constraints —u; < h; < u;
in the following equation

L L
O(h,u) = — Z log(u; + hs) — Z log(u; — hy), (6)

where @(h,u) is defined over domain @ = {(h,u)e RL x RL and |h;| <
u;, ¢ = 1,..., L}. By applying this logarithmic barrier, the optimization prob-
lem with the inequality constraint in (5) can be further transformed to an
equivalent convex function

L
dr(h,u) =t| X P h —y|3 +> " u; + B(h,w), (7)

i=1

where t > 0 is a parameter controlling the approximation accuracy.
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Finally, a truncated Newton interior-point method [24] can then be used
to minimize ¢, which allows us to update h and u as follows

(R0 ) = (R, wlBD) 4 (AR, Au), (8)

where (k,7) are the indices corresponding to the ;" inner loop of the solver
I1.1s in the k' iteration, p is a step size, and (Ah, Au) represents the Newton
step, which is the solution of the following Newton system

H[AR, Au]T =—g, 9)

where H € R2%2L and g € R2% are the Hessian matrix and gradient vector
at the current iteration, respectively. Note that, H is symmetric and positive
definite, which can be expressed as

H=tv| XPh - y||2 + v20;(h,u)

_ |2tx®Tx® 4 D, D, (10)
D Dl

where V denotes the differential operator, and

2(ur? + hy? 2(ur? + hr?
Dl_diag( (n” + ;) (ur” + 2L)>6RL (11)
(ur? = h1%)? (ur? =1 %)?
—4ush —4uphr?
D2_diag< il 12 e urL L2 ) e R (12)
(ur? =h1%)> (w® = hy7)?
Here, diag(aq,- - ,a,) represents a diagonal matrix whose diagonal elements
are ai,- -+ ,ay. The gradient vector g is formed as
g1
= , 13
o= %] (13)
where
g1 = Vaoi(h,u)
2h1/(u1? — hy?
R (14)

—oux®T(X®p —y) + :
2h1/(uL2 — hL2)

2’(1,1/(’(1,12 — h12)

g2 = Vudi(h,u) = tA\1 — : € R%. (15)
2u1/(uL2 — hL2)

In each iteration, the PCG algorithm [23] is employed to compute (Ah, Au)

based on ‘H and g. Then, (8) can be applied to update (h,u) for the next
iteration, until the optimal estimate of h is obtained.
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2.2.2 Source Signal  Estimation
In this step, by fixing the sparse RIR h, the minimization of (3) is reduced to

2* Y = argmin f(x, A 4 r(x), (16)
x

where f(x, h*+1)) = || H*+D g — y||3. Although the sparsity of RIR has been
considered for the estimation of h, it does not theoretically guarantee the
identifiability of the source and RIR [11] [12]. To facilitate the estimation of
x, we incorporate the regularization term r(x) which enables the additional
information of the source x to be exploited to further reduce the solution space
for @, such as the energy information considered in [5] [16].

Here, we consider the dynamic range of the signal as the additional con-
straint r(x). Ideally, the dynamic range of the source & should be used to limit
the solution space of . In practice, however, the source signal & is unknown.
To address this issue, we employ the dynamic range and the energy of the
observed signal y to approximate the prior information for x. This is based on
the observation that h is usually bounded and decaying to zero after a certain
amount of time (e.g. hundreds of milliseconds, depending on the reverberation
level), as a result, for a bounded input @, the output (i.e. the observed signal)
y will be also bounded, subject to a scaling factor.

More specifically, we assume r(x) to be an indicator function defined as
C = {x € [Ymin, Ymaz|Y and ||z|2 < 5}, where § is a threshold used to bound
the energy of the source signal, set as ||yl|2, Ymin and Yma, are the minimum
and maximum values y respectively, indicating the dynamic range of the signal.
In principle, the accuracy of the dynamic range and energy information will
affect the estimation result. This will be illustrated by an example in Section
3.4, where we show how r(x) influences the deconvolution results.

A variable metric forward-backward algorithm [13-15,35,36] is employed to
optimize model (16). For each iteration k, this algorithm consists of a partial
gradient step (forward step) on f(-, h(¥)) followed by a proximal step (back-
ward step) on r.

First, as in [14] [35], we define the proximity operator used in the proximal
step as

prozy 4(z) = argmin(2’) + 1/2||2' — z||§, (17)
z’€RS
where proxy (2) is assumed to be the U-weighted proximity operator of ¢
at z, and U € R%*9 is a symmetric positive definite (SPD) matrix, where
¥ : R% — (—o00, +00] is a proper, lower semicontinuous, and convex function.
ForVz € RY, ||z||u = (2,Uz)'/2, where (-, -) denotes the scalar product. Note
that, if ¥ is an indicator function for a convex set C), i.e.,

b(z) = {0’ =cC (18)

. )
+o00, otherwise
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then prozy 4 (z) is the weighted Euclidean projection onto C, which means
prozy (%) is the closest point in the set C to z in terms of the weighted
Fuclidean distance.

As a result, by optimizing (16) with the variable metric forward-backward
method, & can be updated as

xk ) — ProT ()=t a, r (z®) — 4D 4, 71T ), (19)
—_—

backward step forward step

where (k, i) are the indices corresponding to the i proximal operation in the
Eth iteration, v(*%) is the step size, and Ay, is used to induce the proximity
operator, which can be designed as in [14] [35] or [36]. Here, Ay, is updated as

Ay = |(HED)THE)||p Ly, (20)

and Vf is the partial gradient of f(-,h(*)) with respect to =*%  which is
defined as

Vf — (H(k-i-l))T(H(k-l-l))w(k,i) _ (H(k+1))Ty. (21)

Denoting the optimal solution to (19) as x®18) | we can update the esti-
mated x at the (k + 1) step as £**+1 = 2(%1k) The proposed algorithm is
summarized in Algorithm 1.

Algorithm 1

Input: observation y
Initialization: k = 0, 2(®) = x% construct X0 from 2(®, X(¥) = X0 ¢ =10-6.
Iterations:
for k=0,1,...
Step 1: Sparse RIR h Estimation:
Update h(*1) by solving (4), using (8), (9), (10), and (13),
Construct H*+1D from hk+1)
Update A by (20).
Step 2: Signal  Estimation:
fori=0,.., I — 1
F(kD) = glki) _ (ki) A, -1V},
kit = prog i(’“’i)),

(10k:0) Ly
end for
Update (1) = g(k:Jk)
Construct X *+1) from z(F+1).
Stopping criterion: If ||h(k+1) - h(k)”% <=¢, then & = 2+ h = R(+1) and
break.

end for

Output: estimated & and h
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3 Experiments and Results
3.1 Experimental Setup

We apply our method for speech dereverberation, where the reverberant speech
y was generated by the linear convolution of a sparse RIR h and a source signal
x. The performance indices used in our experiments are the mean absolute
error (MAE) and mean squared error (MSE), defined respectively as:

N
1 Z _
MAE = N 2 |€Z — €1|, (22)
1 N
_ E =. 5 \2
MSE = N 2 (61 — 61) 5 (23)

which measure the ¢; norm and ¢ norm residual errors between the original
signal € and the estimated signal é respectively (both normalized as e =
m), and N is the length of the signal. In practice, e can be either x or
h.

The RIRs were generated in a 4 x 4 x 3 m> room using the room image
model [4], with a sampling frequency at 16 kHz. Then, we selected the early
reflection, and removed the late part of h. The length of h is L = 600. An
example of such an h after normalization is given in Figure 1(b). The source
signals « were selected from the TIMIT database, and 9 different speech signals
including 5 males and 4 females were used in our experiments. The sampling
frequency was 16 kHz, and the length of the sources was N = 500. For each
k, the maximum iteration of [1_ls was set as 500, and I, = 100. The stopping
criterion we used in all tests is [|h(*+1) — h(¥)||3 <= ¢, where € is set as 1076.
Several experiments have been carried out. First, we evaluate the robustness
of the proposed method to the variation in initialization, and also evaluate
the performance of several alternative optimization methods for estimating
h. Then, we compare the proposed method with two state-of-the-art SBD
methods, i.e. SOOT [36] and ALPA [1]. Moreover, we illustrate how the reg-
ularization term r(x) influences the estimation of the source signal and RIR.
Finally, we evaluate the performance of the proposed method for deconvolution
in a relatively high level of reverberation.

3.2 Robustness to Initialization

The initial ° was obtained by adding white Gaussian noise of zero mean
and unit variance to the source signal x. Different noise levels were tested
in initializations. When a high level of noise is added to the source signal,
the initialization tends to be similar to the initialization with random white
Gaussian noise. On the other hand, when the noise level is very low, the blind
deconvolution problem tends to become a deconvolution problem, which is
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Table 1: Performance comparison in terms of MAE for four different algo-
rithms used in our proposed alternating minimization algorithm to illustrate
the influence of different initializations.

MAE (dB)

Noise level (dB) -5 0 5 10
Proposed -8.89 -9.06 -9.08 -9.10
ADMM -8.58 -8.67 -8.76 -8.77

Signal =
Proximal -8.44 -8.85 -8.87 -8.88
CVX -8.62 -8.77 -8.77 -8.77
Proposed | -21.75 | -21.91 | -21.98 | -22.04
ADMM -20.54 | -20.61 | -20. -20.
RIR h 0.5 0.6 0.63 0.69

Proximal | -20.72 | -20.87 | -20.99 | -21.03
CVX -21.42 | -21.56 | -21.56 | -21.56
Proposed | -11.53 | -11.69 | -11.72 | -11.73
ADMM -11.09 | -11.15 | -11.27 | -11.28
Proximal | -10.92 | -11.34 | -11.37 | -11.37
CVX -11.09 | -11.24 | -11.25 | -11.25

Observation y

Table 2: Performance comparison in terms of MSE for four different algo-
rithms used in our proposed alternating minimization algorithm to illustrate
the influence of different initializations.

MSE (dB)

Noise level (dB) -5 0 5 10
Proposed | -15.30 | -15.60 | -15.65 | -15.67
ADMM -14.76 | -14.87 | -15.04 | -15.06

Signal =
Proximal | -14.52 | -15.21 | -15.25 | -15.26
CVX -14.79 | -15.06 | -15.06 | -15.06
Proposed | -27.50 | -27.97 | -28.14 | -28.34
RIR h ADMM -24.97 | -25.03 | -25.06 | -25.34

Proximal | -25.23 | -25.53 | -25.75 | -25.94
CVX -26.61 | -27.04 | -27.05 | -27.05
Proposed | -19.09 | -19.44 | -19.49 | -19.51
ADMM -18.39 | -18.48 | -18.67 | -18.67
Proximal | -18.07 | -18.79 | -18.84 | -18.84
CVX -18.32 | -18.58 | -18.58 | -18.58

Observation y

similar to the case where the source signal x is given. More specifically, °
was obtained by adding noise to x at 4 different levels from -5 dB to 10 dB in
a step of 5 dB. In order to test the robustness of the proposed method, 9 speech
signals and 3 room impulse responses were used in our experiments, leading
to 27 realizations for each initialization. The MAE and MSE were calculated
as the performance indices.
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Table 3: Performance comparison among the proposed method, the smooth
approximate {1 /¢ based SOOT method and the alternating ¢,,—¢s projections
based ALPA method.

MSE (dB) MAE (dB)
Noise level (dB) 10 20 30 10 20 30
Proposed | -11.66 | -18.12 | -18.81 | -6.82 -10.16 | -10.60
Signal x SOOT -5.66 -4.23 -4.99 | -3.66 -3.09 -3.33

ALPA -10.54 | -18.49 | -20.31 | -6.25 -10.32 | -11.37
Proposed | -26.68 | -29.23 | -29.44 | -20.52 | -22.16 | -22.34
RIR h SOOT -19.93 | -22.16 | -22.23 | -16.51 | -17.11 | -17.02

ALPA -25.09 | -27.25 | -29.60 | -20.16 | -21.27 | -21.97
Proposed | -24.96 | -26.22 | -25.96 | -13.84 | -14.83 | -14.75
Observation y SOOT -4.85 -4.85 -5.11 -3.76 -3.72 -3.59
ALPA -21.97 | -28.91 | -31.61 | -12.39 | -15.94 | -17.62

Meanwhile, as the proposed method used an alternating minimization
strategy. For comparison purpose, in the step of h estimation in Algorithm
1, we also tested the robustness of other optimization methods including
ADMM (7], proximal gradient method [33], and the default method from the
CVX toolbox [17] to evaluate the robustness of these compared methods in
this experiment.

The results are shown in Table 1 and Table 2. From these two tables, it can
be observed that the performance of our proposed method is better than those
of the other three methods used in the alternating minimization. In addition,
our proposed method is not so sensitive to the variations in initialization.
Therefore, 0 dB noise is added to the initialization of & in the subsequent
experiments.

3.3 Comparison with Other SBD Algorithms

Our proposed method is also compared with another two SBD methods: the
SOOT algorithm [36] and ALPA algorithm [1]. In [36], a smoothed ¢;/¢2 con-
straint is imposed on the seismic signal, and the dynamic range information
of both h and x are used as the prior information. To make a fair comparison,
we only used the dynamic range of y as the prior information in SOOT, as in
our proposed method. The ALPA algorithm is an ¢, norm based alternating
optimization algorithm, where the sparsity constraint based on the ¢, norm
is imposed on the excitation for speech modeling. Here in our experiment,
the sparsity constraint for both SOOT and ALPA was imposed on RIR. A
source signal and a RIR were selected from the previous experiment as the
ground truth of this experiment. Three different noise levels (i.e. 10, 20, and
30 dB) were tested. In both algorithms, the same set of parameters was used
for different noise levels. For each noise level, 200 realizations were run.
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Fig. 1: An example of the signal and RIR estimated by the proposed method,
SOOT, and ALPA at 20 dB noise level: the original source signal and RIR
are in (a) and (b), and the source signal and RIR estimated by the proposed
method in (c) and (d); by SOOT in (e) and (f); by ALPA in (g) and (h),
respectively.

Table 3 shows the results in terms of MAE and MSE. It can be seen that
the proposed method offers better performance as compared with the SOOT
method. Note that, without the dynamic range as the prior information, the
source signal and RIR estimated by SOOT would have scale ambiguity. The
error of the RIR estimation is reduced due to the sparsity constraint imposed
on the RIR. In addition, without the dynamic range constraint, the estimation
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Fig. 2: Illustration of how r(x) influences the estimation results of the source
and RIR: the original source signal and RIR (unnormalized) are in (a) and (b),
respectively; the estimated source and RIR in (c) and (d) where the observation
y is used to define r(x); in (e) and (f) where the original source x is used to
define (x); in (g) and (h) where r(x) is not applied.

of the source signal would be unstable and much worse as compared with that
given by our proposed method. As compared with ALPA, our proposed method
gives better performance for the RIR estimation at all noise levels, and a better
performance in the estimation of the source signal with a relatively high level
of noise. However, the ALPA algorithm tends to give slightly better results for
a low level of noise (e.g. for SNR at 30 dB). An example is given in Figure 1
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to show the source signal and RIR estimated by the proposed method, SOOT
and ALPA, respectively. The examples were randomly selected from the 200
realizations at 20 dB noise level. We can see that the source signals estimated
by both the proposed method and the ALPA algorithm are close to the original
source signal. Our proposed method gives better estimate for RIR as compared
with SOOT and ALPA. The results by SOOT without the dynamic range
constraint are not comparable with those by the proposed method and ALPA.

3.4 The Impact of Regularization r(x)

In our proposed method, the dynamic range and energy of y are used as the
prior information to define the regularization term r(x). Here, an example
is given to illustrate how r(x) influences the estimation results. Experiments
were carried out under three different situations in which r(x) was defined by
the observation y as in our proposed method, by the ground truth signal x,
or not used as a regularization. The RIR used for generating the observations
is the same as the one used in the previous experiment.

From Figure 2, we can see that the source signal and RIR can be recov-
ered very well with the use of r(x). Especially, the scale ambiguity can be
mitigated when r(x) was defined by using the ground truth source signal, and
this can be observed by comparing the subplots (e) and (f) with (a) and (b).
When r(x) was defined by using the observation y, the estimated source sig-
nal and RIR resemble the ground truth source signal and RIR very well even
though there are some scale ambiguities associated with the estimated source
signal and RIR, which can be observed by comparing the subplots (c) and
(d) with (a) and (b). When the regularization term r(x) was not applied, the
obtained estimates (as shown in the subplots (g) and (h)) appear to be much
more noisy as compared with the ground truth and those obtained by incor-
porating (). This is mainly because the optimization may be trapped in an
undesired local optimum, where the source signal and RIR cannot be identi-
fied. In the ALPA algorithm [1], a normalization strategy was used to address
this problem, where h was normalized during the alternating optimization in
each iteration. In comparison, with our proposed regularization r(x), the prior
information about the source & was exploited and thus, providing more ac-
curate estimation result. In addition, the scale ambiguity issue can be better
mitigated using the function r(x).

3.5 Deconvolution Performance in a High Level of Reverberation

We also give an example to show how the proposed method performs when
the reverberation level is relatively high, e.g. the RIR h is generated with a
reverberation time 900 ms. Figure 3 (b) shows the ground truth of a shortened
version of the RIR with 480 samples from the early part and 520 samples from
the late part. The observation y was added with 20 dB white Gaussian noise.
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Fig. 3: Estimation results of the source and RIR for a high level of reverberation
(i.e. reverberation time at 900ms) with 20 dB noise: (a) and (b) are the original
source signal and RIR, respectively; (c) and (d) are the estimated source signal
and RIR, respectively.

Figure 3 shows the comparison between the ground truth and the estimation
result for the source signal and the RIR.

We can see from Figure 3 that the estimated source is similar to the original
source, however, the RIR tends to be more sparse as compared with the original
RIR. This is not surprising considering the fact that the sparsity constraint
has been applied to the RIR in the proposed cost function, and as a result,
a sparse RIR has been obtained from the noisy observations. To fully recover
the RIR including the late part, a joint sparsity and dense model could be
used where the sparsity and density can be applied for the early and late part
of the RIR respectively. This is however beyond the scope of current work.

4 Conclusion

We have proposed a sparse blind deconvolution method by taking into ac-
count the sparsity of RIR and the dynamic range of the source signal in the
cost function, which includes an ¢5 norm least squares data fidelity term, an ¢,
norm regularization term and an indicator function. An alternating minimiza-
tion strategy is employed to optimize the cost function, where the I1_[s and
proximal methods are used to solve the two sub-optimization problems. Exper-
imental results show that our proposed method provides better estimates for
both the source signal and the impulse responses of the sparse acoustic system
compared with two baselines. By considering the dynamic range of the signal,
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more accurate estimation of the source signal and the RIR can be obtained,
where the scale ambiguity issue can also be mitigated.

The proposed method could be extended to include late reverberation by
using a joint sparsity and density model, such as a mixed ¢; and ¢5 norm to
exploit the sparsity and density of RIR respectively, which is an interesting
direction for future work.
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