Skip to main content
Log in

A Sparse Analysis Window for Discrete Gabor Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Here, we analyze sparse analysis windows for complex-valued and real-valued discrete Gabor transforms. A number of theories presented in this study indicate that the existence and uniqueness of a sparse analysis window for a given synthesis window depend to a great extent on the sparsity of the synthesis window. Specifically, the upper and lower bounds on the analysis window sparsity are obtained for synthesis windows of different sparsities and analyzed in detail. Particularly, if the sparsity of a given synthesis window with connected support is equal to the discrete Gabor transform time-shift parameter, the sparsest analysis window is unique. In addition, we propose an algorithm that searches for a sparse analysis window. Compared with existing algorithms, a sparse analysis window with fewer nonzero elements and/or smaller reconstruction errors can be obtained with the proposed algorithm. A sequence of experimental results reveals its superior effectiveness. In addition, a better Gabor representation with high concentration and time–frequency resolution is obtained with the sparse analysis window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Bianco, D. Gottas, J.M. Wilczak, Implementation of a Gabor transform data quality-control algorithm for UHF wind profiling radars. J. Atmos. Ocean. Technol. 30(12), 2697–2703 (2013)

    Article  Google Scholar 

  2. R.M. Bracewell, The fast hartley transform. Proc. IEEE 72(8), 1010–1018 (1984)

    Article  Google Scholar 

  3. P.G. Casazza, A. Heinecke, F. Krahmer, G. Kutyniok, Optimally sparse frames. IEEE Trans. Inf. Theory 57(11), 7279–7287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Christensen, Pairs of dual Gabor frame generators with compact support and desired frequency localization. Appl. Comput. Harmon. Anal. 20, 403–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Christensen, H.O. Kim, R.Y. Kim, Gabor windows supported on [\(-\)1, 1] and dual windows with small support. Adv. Comput. Math. 36, 525–545 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. O. Christensen, Y.C. Eldar, Generalized shift-invariant frames and duals for subspaces. J. Fourier Anal. Appl. 11, 299–313 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. O. Christensen, Y.C. Eldar, Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal. 17(1), 48–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Daubechies, H.J. Landau, Z. Landau, Gabor time–frequency lattices and the Wexler–Raz Identity. J. Fourier Anal. Appl. 1(4), 437–478 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. H.G. Feichtinger, T. Strohmer, Gabor Analysis and Algorithms-Theory and Applications (Birkhäuser, Boston, 1998)

    Book  MATH  Google Scholar 

  10. P. Flandrin, P. Borgnat, Time–frequency energy distributions meet compressed sensing. IEEE Trans. Signal Process. 58(6), 2974–2982 (2010)

    Article  MathSciNet  Google Scholar 

  11. D. Gabor, Theory of communication. J. Inst. Electr. Eng. 93(3), 429–457 (1946)

    Google Scholar 

  12. K. Gröchenig, Foundations of Time–Frequency Analysis (Birkhäuser, Boston, 2001)

    Book  MATH  Google Scholar 

  13. M. Hampejs, G. Kracher, The inversion of Gabor-type matrices. Signal Process. 87(7), 1670–1676 (2007)

    Article  MATH  Google Scholar 

  14. A. Joseph, A.K. Brodzik, R. Tolimieri, Under-sampled Weyl–Heisenberg expansions via orthogonal projections in Zak space. Signal Process. 81(11), 2383–2402 (2001)

    Article  MATH  Google Scholar 

  15. F. Krahmer, G. Kutyniok, J. Lemvig, Sparsity and spectral properties of dual frames. Linear Algebra Appl. 439, 982–998 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Kutyniok, W.Q. Lim, Compactly supported shearlets are optimally sparse. J. Approx. Theory 163, 1564–1589 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Li, Y. Liu, T. Mi, Sparse dual frames and dual Gabor frames of minimal time and frequency supports. J. Fourier Anal. Appl. 19(1), 48–76 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Li, H. Ogawa, Pseudo frames for subspaces with applications. J. Fourier Anal. Appl. 10(4), 409–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Z. Liu, X. Wei, X. Li, Aliasing-free micro-doppler analysis based on short-time compressed sensing. IET Signal Process. 8(2), 176–187 (2013)

    Article  Google Scholar 

  20. Z. Liu, P. You, X. Wei, D. Liao, X. Li, High resolution time–frequency distribution based on short-time sparse representation. Circuits Syst. Signal Process. 33(12), 3949–3965 (2014)

    Article  Google Scholar 

  21. M. Matthe, L.L. Mendes, G. Fettweis, Generalized frequency division multiplexing in a Gabor transform setting. IEEE Commun. Lett. 18(8), 1379–1382 (2014)

    Article  Google Scholar 

  22. S. Moreno-Picot, M. Arevalillo-Herraez, W. Diaz-Villanueva, A linear cost algorithm to compute the discrete gabor transform. IEEE Trans. Signal Process. 58(5), 2667–2674 (2010)

    Article  MathSciNet  Google Scholar 

  23. S. Qian, D. Chen, Discrete Gabor transform. IEEE Trans. Signal Process. 41(7), 2429–2438 (1993)

    Article  MATH  Google Scholar 

  24. S. Qiu, Gabor-type matrix algebra and fast computations of dual and tight Gabor wavelets. Opt. Eng. 36(1), 276–282 (1997)

    Article  Google Scholar 

  25. H. Rabbani, S. Gazor, Local probability distribution of natural signals in sparse domains, in IEEE International Conference on Acoustics, Speech and Signal Processing, May 22–27 (2011)

  26. N. Saini, A. Sinha, Face and palmprint multimodal biometric systems us ing Gabor–Wigner transform as feature extraction. Pattern Anal. Appl. 18(4), 921–932 (2015)

    Article  MathSciNet  Google Scholar 

  27. I. Shafi, J. Ahmad, S.I. Shah, F.M. Kashif, Quantitative evaluation of concentrated time–frequency distributions, in 17th European Signal Processing Conference, Glasgow, pp. 1176–1180 (2009)

  28. T. Strohmer, Numerical algorithms for discrete Gabor expansions, in Gabor Analysis and Algorithms: Theory and Applications, ed. by H.G. Feichtinger, T. Strohmer (Birkhäuser, Boston, 1998)

    Google Scholar 

  29. L. Tao, H.K. Kwan, 1-D and 2-D real-valued discrete Gabor transforms, in 43rd IEEE Midwest Symposium on Circuits and Systems, August 8–11 (2000)

  30. L. Tao, G. Hu, H.K. Kwan, Multiwindow real-valued discrete Gabor transform and its fast algorithms. IEEE Trans. Signal Process. 63(20), 5513–5524 (2015)

    Article  MathSciNet  Google Scholar 

  31. L. Tao, H.K. Kwan, Novel DCT-based real-valued discrete Gabor transform and its fast algorithms. IEEE Trans. Signal Process. 57(6), 2151–2164 (2009)

    Article  MathSciNet  Google Scholar 

  32. L. Tao, H.K. Kwan, Multirate-based fast parallel algorithms for DCT-kernel-based real-valued discrete Gabor transform. Signal Process. 92(3), 679–684 (2012)

    Article  Google Scholar 

  33. M. Temerinac, Discrete Fourier-invariant signals: design and application. IEEE Trans. Signal Process. 60(3), 1108–1120 (2012)

    Article  MathSciNet  Google Scholar 

  34. T. Werther, E. Matusiak, Y. Eldar, N. Subbanna, A unified approach to dual Gabor windows. IEEE Trans. Signal Process. 55(5), 1758–1768 (2007)

    Article  MathSciNet  Google Scholar 

  35. J. Wexler, S. Raz, Discrete Gabor expansions. Signal Process. 21(3), 207–220 (1990)

    Article  Google Scholar 

  36. N. Yahya Bey, Multi-resolution Fourier analysis: time–frequency resolution in excess of Gabor–Heisenberg limit. Signal Image Video Process. 8(4), 765–778 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61301295 and 61372137, the Natural Science Foundation of Anhui Province under Grant No. 1708085MF151 and the Doctoral Fund of Anhui University. The authors would like to thank the anonymous reviewers for valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Fang, X. & Tao, L. A Sparse Analysis Window for Discrete Gabor Transform. Circuits Syst Signal Process 36, 4161–4180 (2017). https://doi.org/10.1007/s00034-017-0510-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0510-0

Keywords

Navigation