Skip to main content
Log in

Compressed Sensing Construction for Underdetermined Source Separation

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Underdetermined blind source separation based on compressed sensing (CS) has already been proven to be an effective mechanism from an experimental viewpoint. In this study, we develop a theoretical result and show that, under a certain sparsity constraint for the restricted isometry property, the accuracy of CS when retrieving sources is guaranteed. This theoretical result can be regarded as a generalization of the blocked polynomial deterministic matrix theory and has been confirmed using numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Blumensath, M.E. Davies, Compressed sensing and source separation, in Proceedings of the International Conference on Independent Component Analysis and Blind Source Separation, pp. 341–348 (2007)

  2. E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly in complete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  3. R.A. Devore, Deterministic constructions of compressed sensing matrices. J. Complex. 23(4–6), 918–925 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. T.B. Dong, Y.K. Lei, J.S. Yang, An algorithm for underdetermined mixing matrix estimation. Neurocomputing 104, 26–34 (2013)

    Article  Google Scholar 

  5. D.L. Donoho, Y. Tsaig, I. Drori, J.L. Starck, Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(2), 1094–1121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Flinth, A geometrical stability condition for compressed sensing. Linear Algebra Appl. 504, 406–432 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Z.Y. He, S.L. Xie, L. Zhang, A. Cichocki, A note on Lewicki–Sejnowski gradient for learning overcomplete representation. Neural Comput. 20(3), 636–643 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Holger, S. Karin, V. Pierre, Compressed sensing and redundant dictionaries. IEEE Trans. Inf. Theory 54(5), 2210–2219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. X.B. Li, R.Z. Zhao, S.H. Hu, Blocked polynomial deterministic matrix for compressed sensing, in Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1–4 (2010)

  10. F.M. Naini, H. Mohimani, M. Zadeh, C. Jutten, Estimating the mixing matrix in space component analysis based on partial k-dimensional subspace clustering. Neurocomputing 71, 2330–2343 (2008)

    Article  Google Scholar 

  11. D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Needell, R. Vershynin, Signal recovery from inaccurate and incomplete measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Top. Signal Process. 4(2), 310–316 (2010)

    Article  Google Scholar 

  13. R.C. Shi, F. Wei, Matrix Analysis, 2nd edn. (Beijing Institute of Technology Press, Beijing, 2008)

    Google Scholar 

  14. A.G. Shwetha, V.S. Saroja, Compressed sensing reconstruction of an audio signal using OMP. Int. J. Adv. Comput. Res. 5(18), 75–79 (2015)

    Google Scholar 

  15. Y.C. Sun, J. Xin, Underdetermined sparse blind source separation of nonnegative and partially overlapped data. SIAM J. Sci. Comput. 33(4), 2063–2094 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Wang, S. Kwon, B. Shim, Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 60(12), 6202–6216 (2012)

    Article  MathSciNet  Google Scholar 

  17. J. Wang, S. Kwon, P. Li, B. Shim, Recovery of sparse signals via generalized orthogonal matching pursuit: a new analysis. IEEE Trans. Signal Process. 64(4), 1076–1089 (2016)

    Article  MathSciNet  Google Scholar 

  18. K. Wei, Fast iterative hard thresholding for compressed sensing. IEEE Signal Process. Lett. 22(5), 593–597 (2015)

    Article  Google Scholar 

  19. Y.J. Xie, Y.F. Ke, C.F. Ma, The modified accelerated bergman method for regularized basis pursuit problem. J. Inequal. Appl. 2014(1), 1–17 (2014)

    Article  Google Scholar 

  20. T. Xu, W.W. Wang, A compressed sensing approach for underdetermined blind audio source separation with sparse representation, in Proceedings of the IEEE International Workshop on Statistical Signal Processing, pp. 493–496 (2009)

  21. J.D. Xu, X.C. Yu, D. Hu, L.B. Zhang, A fast mixing matrix estimation method in the wavelet domain. Signal Process. 95, 58–66 (2014)

    Article  Google Scholar 

  22. T. Xu, W.W. Wang, A block-based compressed sensing method for underdetermined blind speech separation incorporating binary mask, in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP2010), pp. 2022–2025 (2010)

  23. E. Yonina, K. Gitta, Compressed Sensing Theory and Applications (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Science Foundation of China under Grant No. 61601417. The authors would like to thank the anonymous reviewers for their thorough reading of the paper and patient feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Zhang.

Appendix: Proof of Theorem 2

Appendix: Proof of Theorem 2

From Eq. (5), the length and sparsity of signal \(\varvec{\uptheta }\) are NL and K, respectively. \(\Gamma \in \{1,\;2,\;\ldots ,\;NL\}\) and \({\#}(\Gamma )=K\). Without loss of generality, we assume that the source signals \(\mathbf{s}\) are sparse in the time domain, then the sparsity of \(\varvec{\uptheta }_i \) is \(K_i \). Then, the Gramian matrix can be written as follows:

$$\begin{aligned} \mathbf{D}_\Gamma =\varvec{\Pi }_\Gamma ^\mathrm {T} \varvec{\Pi }_\Gamma= & {} \left( {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} {\varvec{\Pi }_{\Gamma _1 } }&{} \mathbf{0}&{} \cdots &{} \mathbf{0} \\ \mathbf{0}&{} {\varvec{\Pi }_{\Gamma _2 } }&{} \cdots &{} \mathbf{0} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{0}&{} \mathbf{0}&{} \cdots &{} {\varvec{\Pi }_{\Gamma _L } } \\ \end{array} }} \right) _{K\times ML}^{\mathrm{T}} \left( {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} {\varvec{\Pi }_{\Gamma _1 } }&{} \mathbf{0}&{} \cdots &{} \mathbf{0} \\ \mathbf{0}&{} {\varvec{\Pi }_{\Gamma _2 } }&{} \cdots &{} \mathbf{0} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{0}&{} \mathbf{0}&{} \cdots &{} {\varvec{\Pi }_{\Gamma _L } } \\ \end{array} }} \right) _{ML\times K}\nonumber \\ \qquad= & {} \left( {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} {\varvec{\Pi }_{\Gamma _1 }^\mathrm {T} \varvec{\Pi }_{\Gamma _1 } }&{} 0&{} \cdots &{} \mathbf{0} \\ \mathbf{0}&{} {\varvec{\Pi }_{\Gamma _2 }^\mathrm {T} \varvec{\Pi }_{\Gamma _2 } }&{} \cdots &{} \mathbf{0} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{0}&{} \mathbf{0}&{} \cdots &{} {\varvec{\Pi }_{\Gamma _L }^\mathrm {T} \varvec{\Pi }_{\Gamma _L } } \\ \end{array} }} \right) _{K\times K}\nonumber \\ \qquad\doteq & {} \left( {{\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} {\mathbf{D}_{\Gamma _1 } }&{} \mathbf{0}&{} \cdots &{} \mathbf{0} \\ \mathbf{0}&{} {\mathbf{D}_{\Gamma _2 } }&{} \cdots &{} \mathbf{0} \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \mathbf{0}&{} \mathbf{0}&{} \cdots &{} {\mathbf{D}_{\Gamma _L } } \\ \end{array} }} \right) , \end{aligned}$$
(12)

where \(\mathbf{D}_{\Gamma _i } =\varvec{\Pi }_{\Gamma _i }^\mathrm {T} \varvec{\Pi }_{\Gamma _i } \); That is,

$$\begin{aligned} \mathbf{D}_\Gamma (k,\;h)=\langle \varvec{\Pi }_\Gamma (\cdot ,\;k),\varvec{\Pi }_\Gamma (\cdot ,\;h)\rangle =\sum _{j=1}^{ML} {\varvec{\Pi }_\Gamma (j,\;k)} \varvec{\Pi }_\Gamma (j,\;h). \end{aligned}$$
(13)

From Eq. (12), we have

  1. (i)

    when \(k,\;h\in \Gamma _i \)

    1. (a)

      if \(k=h\), then \(\mathbf{D}_\Gamma (k,\;k)=1\);

    2. (b)

      if \(k\ne h,\mathbf{D}_\Gamma (k,\;h)=\sum \limits _{j=1}^{ML} {\varvec{\Pi }_\Gamma (j,\;k)} \varvec{\Pi }_\Gamma (j,\;h)=\langle \mathbf{a}_{{k}'} ,\mathbf{a}_{{h}'} \rangle \).

  2. (ii)

    when \(k\in \Gamma _i ,\;h\in \Gamma _j ,\;i\ne j,\;\mathbf{D}_\Gamma (k,\;h)=0\).

Because any off-diagonal entry of \(\mathbf{D}_\Gamma \) is less than \(\mathop {\max }\limits _{k\ne h} \{\mathbf{D}_\Gamma (k,\;h)\}\), the off-diagonal entries in any row or column of \(\mathbf{D}_\Gamma \) have sum

$$\begin{aligned} \delta _i \doteq (K_i -1)\mathop {\max }\limits _{k, h\in \Gamma _i , k\ne h} \{\mathbf{D}_\Gamma (k,\;h)\}. \quad \hbox {If }~\delta _i <1 \end{aligned}$$
(14)

then

$$\begin{aligned} K_i =\frac{\delta _i }{\mathop {\max }\limits _{k, h\in \Gamma _i , k\ne h} \{\mathbf{D}_\Gamma (k,\;h)\}}+1. \end{aligned}$$
(15)

Let \(\delta =\mathop {\max }\limits _{i=1, 2, \ldots , L} \delta _i <1\), then

$$\begin{aligned} K= & {} \sum _{i=1}^L {K_i } =\sum _{i=1}^L {\left( {\frac{\delta _i }{\mathop {\max }\limits _{k, h\in \Gamma _i , k\ne h} \{\mathbf{D}_\Gamma (k,\;h)\}}+1} \right) } \nonumber \\\le & {} \sum _{i=1}^L {\left( {\frac{\delta }{\mathop {\max }\limits _{k, h\in \Gamma _i , k\ne h} \{\mathbf{D}_\Gamma (k,\;h)\}}+1} \right) } . \end{aligned}$$
(16)

Hence, we write

$$\begin{aligned} \mathbf{D}_\Gamma =\mathbf{I}+\mathbf{B}_\Gamma , \end{aligned}$$
(17)

where \(\mathbf{I}\) is a unit matrix and

$$\begin{aligned} \parallel \mathbf{B}_\Gamma \parallel _p \le \delta ,\;p=1\;or\;p=\infty . \end{aligned}$$
(18)

As \(\mathbf{B}_\Gamma \) is a symmetric matrix, by interpolation of operators, we obtain that

$$\begin{aligned} \parallel \mathbf{B}_\Gamma \parallel _2 =\rho (\mathbf{B}_\Gamma )\le \parallel \mathbf{B}_\Gamma \parallel _p \le \delta ,\quad p=1\;\hbox {or}\;p=\infty , \end{aligned}$$
(19)

where \(\rho (\mathbf{B}_\Gamma )\) denote the spectral norm of \(\mathbf{B}_\Gamma \). Since \(\parallel \mathbf{A}+\mathbf{B}\parallel _2 \le \parallel \mathbf{A}\parallel _2 +\parallel \mathbf{B}\parallel _2 \) for any matrices \(\mathbf{A}\) and \(\mathbf{B}\) [13], it follows that

$$\begin{aligned} \parallel \mathbf{D}_\Gamma \parallel _2 \le 1+\delta ,\;\parallel \mathbf{D}_\Gamma ^{-1} \parallel _2 \le (1-\delta )^{-1}. \end{aligned}$$
(20)

Therefore, \(\mathbf{D}_\Gamma \) has eigenvalues in \([1-\delta ,\;1+\delta ]\). Therefore, we have proved that matrix \(\varvec{\Pi }\) satisfies the RIP with \(\delta =\mathop {\max }\limits _{i=1, 2, \ldots , L} \delta _i \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, S. & Qi, R. Compressed Sensing Construction for Underdetermined Source Separation. Circuits Syst Signal Process 36, 4741–4755 (2017). https://doi.org/10.1007/s00034-017-0520-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0520-y

Keywords

Navigation