Skip to main content
Log in

Super-Gaussian BSS Using Fast-ICA with Chebyshev–Pade Approximant

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Independent component analysis (ICA) is one of the most powerful techniques to solve the problem of blind source separation (BSS), and the well-known Fast-ICA is excellent for large-scale BSS. Fast-ICA tries to find the demixing matrix by optimizing the nonlinear objective (cost or contrast) functions. For Fast-ICA, there are three built-in contrast functions to separate non-Gaussian sources, and their derivatives are similar to nonlinearities used in neural networks. However, the contrast functions and their nonlinearities for separating super-Gaussian sources are not optimal owing to their high computational cost, which greatly affect the convergence rate of Fast-ICA. To address this issue, this paper proposes two rational nonlinearities to replace the built-in (original) nonlinearities. The rational nonlinearities are derived by the Chebyshev–Pade approximant from Chebyshev polynomials (series) of the original nonlinearities. To speed up the convergence of Fast-ICA, the degrees in both numerator and denominator of rational functions are designed to be relatively low, and thus the rational polynomials can be quickly evaluated. Simulation results of audio BSS show that the proposed rational nonlinearities can not only improve the convergence rate of Fast-ICA, but also improve the separation performance index; Experiment results of real electrocardiogram data also verify the validity of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Adali, C. Jutten, A. Yeredor, A. Cichocki, E. Moreau, Source separation and applications. IEEE Signal Process. Mag. 31(3), 16–17 (2014)

    Article  Google Scholar 

  2. T. Adali, V.D. Calhoun, Complex ICA of brain imaging data. IEEE Signal Process. Mag. 24(5), 136–139 (2007)

    Article  MATH  Google Scholar 

  3. J. Antoni, Cyclic spectral analysis in practice. Mechan. Sys. Signal Process. 21, 597–630 (2007)

    Article  Google Scholar 

  4. J.P. Boyd, Chebyshev expansion on intervals with branch points with application to the root of Kepler’s equation: a Chebyshev–Hermite–Pade method. J. Comput. Appl. Math. 223, 693–702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.C. Butcher, Order and stability of generalized Pade approximations. Appl. Num. Math. 59, 558–567 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Capdessus, A.K. Nandi, Extraction of a cyclostationary source using a new cost function without prewhitening. Signal Process. 9(11), 2497–2505 (2011)

    Article  MATH  Google Scholar 

  7. R. Chai, G.R. Naik, T.N. Nguyen, S.H. Ling, Y. Tran, A. Craig, H.T. Nguyen, Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE J. Biomed. Health Inform. (2016). doi:10.1109/JBHI.2016.2532354

  8. P. Comon, Independent component analysis, a new concept? Signal Process. 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  9. P. Comon, C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Applications (Academic, New York, 2010)

    Google Scholar 

  10. R.M. Corless, N. Fillion, A Graduate Introduction to Numerical Methods: From the Viewpoint of Backward Error Analysis (Springer, New York, 2013)

    Book  MATH  Google Scholar 

  11. A. Cuyt, Pade Approximants for Operators: Theory and Applications (Springer, Heidelberg, 1984)

    Book  MATH  Google Scholar 

  12. H.H. Denman, Minimax polynomial approximation. Math. Comput. 20, 257–265 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.B. Farr, S. Gao, Grobner bases and generalized Pade approximation. Math. Comput. 75(253), 461–473 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Ge, L. Yao, H. Zhang, Z. Long, A two-step super-Gaussian independent component analysis approach for fMRI data. NeuroImage 118, 344–358 (2014)

    Article  Google Scholar 

  15. A.P. Golub, Generalized moment representations and Pade–Chebyshev approximations. Ukrainian Math. J. 42(6), 672–676 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Gu, H. Zhang, D. Zhu, Blind separation of non-stationary sources using continuous density hidden Markov models. Digit. Signal Process. 23(5), 1549–1564 (2013)

    Article  MathSciNet  Google Scholar 

  17. J. Guo, Y. Deng, A time-frequency algorithm for noisy ICA. Third International Conference Geo-Informatics in Resource Management and Sustainable Ecosystem (GRMSE 2015) (Springer, Berlin 2016), pp. 357–365

  18. Y. Guo, G.R. Naik, H. Nguyen, Single channel blind source separation based local mean decomposition for biomedical applications. In the Proceedings of IEEE Engineering in Medicine and Biology Society (Osaka, 2013), pp. 6812–6815

  19. Y. Guo, S. Huang, Y. Li, G.R. Naik, Edge effect elimination in single-mixture blind source separation. Circuit. Sys. Signal Process. 32(5), 2317–2334 (2013)

    Article  MathSciNet  Google Scholar 

  20. M. Haritopoulos, C. Capdessus, A.K. Nandi, Foetal PQRST extraction from ECG recordings using cyclostationarity-based source separation method. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Buenos Aires, 2010). doi:10.1109/IEMBS.2010.5627304

  21. X. He, F. He, T. Zhu, Large-scale super-Gaussian sources separation using Fast-ICA with rational nonlinearities. Int. J. Adapt. Control Signal Process. 31, 379–397 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. X. He, F. He, W. Cai, Underdetermined BSS based on K-means and AP clustering. Circuit. Sys. Signal Process. 35(8), 2881–2913 (2016)

    Article  Google Scholar 

  23. X. He, T. Zhu, ICA of noisy music audio mixtures based on iterative shrinkage denoising and FastICA using rational nonlinearities. Circuit. Sys. Signal Process. 33(6), 1917–1956 (2014)

    Article  MathSciNet  Google Scholar 

  24. J. Himberg, A. Hyvarinen, F. Esposito, Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage 22, 1214–1222 (2004)

    Article  Google Scholar 

  25. E.J. Hinch, Perturbation Methods (Cambridge University Press, New York, 1991)

    Book  MATH  Google Scholar 

  26. M.H. Holmes, Introduction to Perturbation Methods, 2nd edn. (Springer, New York, 2013)

    Book  MATH  Google Scholar 

  27. http://www.freesound.org/

  28. A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  29. A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001)

    Book  Google Scholar 

  30. O. Karpenkov, Geometry of Continued Fractions (Springer, Heidelberg, 2013)

    Book  MATH  Google Scholar 

  31. Z. Koldovský, P. Tichavský, E. Oja, Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer–Rao lower bound. IEEE Trans. Neural Netw. 17(5), 1265–1277 (2006)

    Article  MATH  Google Scholar 

  32. L. Komzsik, Approximation Techniques for Engineers (Taylor & Francis Group, Boca Raton, 2007)

    MATH  Google Scholar 

  33. L.D. Lathauwer, B.D. Moor, J. Vandewalle, Fetal electrocardiogram extraction by blind source subspace separation. IEEE Trans. Biomed. Eng. 47(5), 567–572 (2000)

    Article  Google Scholar 

  34. K.U. Leuven. DaISy, ESAT/SISTA, (1999). Database for the Identification of Systems at http://homes.esat.kuleuven.be/~smc/daisy/

  35. H. J. Maehly, Rational approximations for transcendental function. Proceedings of the International Conference on Information Processing (London, 1960), pp. 57–62

  36. J.C. Mason, D. Handscomb, Chebyshev Polynomials (Chapman & Hall/CRC, Boca Raton, 2003)

    MATH  Google Scholar 

  37. A.C. Matos, Integral representation of the error and asymptotic error bounds for generalized Pade type approximants. J. Comput. Appl. Math. 77, 239–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. G.R. Naika, Measure of quality of source separation for sub- and super-Gaussian audio mixtures. Informatica 23(4), 581–599 (2012)

    MathSciNet  MATH  Google Scholar 

  39. G.R. Naik, A.H. Al-Timemy, H.T. Nguyen, Transradial amputee gesture classification using an optimal number of sEMG sensors: an approach using ICA clustering. IEEE Trans. Neural Sys. Rehabil. Eng. 24(8), 837–846 (2016)

    Article  Google Scholar 

  40. G.R. Naik, S.E. Selvan, H.T. Nguyen, Single-channel EMG classification with ensemble-empirical-mode-decomposition-based ICA for diagnosing neuromuscular disorders. IEEE Trans. Neural Sys. Rehabil. Eng. 24(7), 734–743 (2016)

    Article  Google Scholar 

  41. G.R. Naika, W. Wang, Audio analysis of statistically instantaneous signals with mixed Gaussian probability distributions. Int. J. Electron. 99(10), 1333–1350 (2012)

    Article  Google Scholar 

  42. G.R. Naik, W. Wang, Blind Source Separation: Advances in Theory, Algorithms and Applications (Springer, Heidelberg, 2014)

    Book  MATH  Google Scholar 

  43. M. Novey, T. Adalı, Complex ICA by negentropy maximization. IEEE Trans. Neural Netw. 19(4), 596–609 (2008)

    Article  Google Scholar 

  44. E. Oja, Convergence of the symmetrical FastICA algorithm. 9th International Conference on Neural Information Processing (ICONIP) (Singapore, 2002), pp. 1368–1372

  45. E. Ollila, V. Koivunen, Complex ICA using generalized uncorrelating transform. Signal Process. 89, 365–377 (2009)

    Article  MATH  Google Scholar 

  46. C.B. Papadias, Globally convergent blind source separation based on a multiuser kurtosis maximization criterion. IEEE Trans. Signal Process. 48(12), 3508–3519 (2000)

    Article  MathSciNet  Google Scholar 

  47. G. Pendharkar, G.R. Naik, H.T. Nguyen, Using blind source separation on accelerometry data to analyze and distinguish the toe walking gait from normal gait in ITW children. Biomed. Signal Process. Contr. 13, 41–49 (2014)

    Article  Google Scholar 

  48. L.E.D. Persia, D.H. Milone, Using multiple frequency bins for stabilization of FD-ICA algorithms. Signal Process. 119, 162–168 (2016)

    Article  Google Scholar 

  49. G.M. Phillips, Interpolation and Approximation by Polynomials (Springer, New York, 2003)

    Book  MATH  Google Scholar 

  50. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes, The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York, 2007)

    MATH  Google Scholar 

  51. H. Shen, M. Kleinsteuber, K. Huper, Local convergence analysis of FastICA and related algorithms. IEEE Trans. Neural Netw. 19(6), 1022–1032 (2008)

    Article  Google Scholar 

  52. P. Tichavský, Z. Koldovský, E. Oja, Speed and accuracy enhancement of linear ICA techniques using rational nonlinear functions. 7th International Conference, ICA 2007 (London, 2007), pp. 285–292

  53. P. Tichavský, Z. Koldovský, E. Oja, Performance analysis of the FastICA algorithm and Cramer–Rao bounds for linear independent component analysis. IEEE Trans. Signal Process. 54(4), 1189–1203 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. N. Trefethen, Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013)

    MATH  Google Scholar 

  55. S.V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction, 4th edn. (Wiley, Chichester, 2008)

    Book  Google Scholar 

  56. E. Vincent, N. Bertin, R. Gribonval, F. Bimbot, From blind to guided audio source separation. IEEE Signal Process. Mag. 31(3), 107–115 (2014)

    Article  Google Scholar 

  57. C. Yuan, X. Sun, L.V. Rui, Fingerprint liveness detection based on multi-scale LPQ and PCA. China Comm. 13(7), 60–65 (2016)

    Article  Google Scholar 

  58. M. Zhang, M. Haritopoulos, A.K. Nandi, Fetal ECG subspace estimation based on cyclostationarity. Proceedings of the 24th European Signal Processing Conference(Budapest, 2016), pp. 2060–2064

Download references

Acknowledgements

Funding for this work was supported by the National Natural Science Foundation of China [No. 60572183] and the Research Projects of the Open Fund Project of Key Laboratory in Hunan Universities [No. 14K022].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-sen He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Xs., He, F. & He, Al. Super-Gaussian BSS Using Fast-ICA with Chebyshev–Pade Approximant. Circuits Syst Signal Process 37, 305–341 (2018). https://doi.org/10.1007/s00034-017-0554-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0554-1

Keywords

Navigation